Answer
```python
{
- "fields": [
- {
- "type": "vector",
- "path": "embedding",
- "numDimensions": 384,
- "similarity": "cosine"
- },
- {
- "type":"filter",
- "path":"metadata.contentType"
- },
- {
- "type":"filter",
- "path":"updated"
+ "name": ATLAS_VECTOR_SEARCH_INDEX_NAME,
+ "type": "vectorSearch",
+ "definition": {
+ "fields": [
+ {
+ "type": "vector",
+ "path": "embedding",
+ "numDimensions": 384,
+ "similarity": "cosine"
+ },
+ {"type": "filter", "path": "metadata.contentType"},
+ {"type": "filter", "path": "updated"}
+ ]
}
- ]
}
```
-Once you have updated the vector search index, fill in any `