-
Notifications
You must be signed in to change notification settings - Fork 191
/
entity_attribute_aggregator.py
196 lines (171 loc) · 8.46 KB
/
entity_attribute_aggregator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import re
from typing import Dict, Optional
from loguru import logger
from pydantic import PositiveInt
from data_juicer.ops.base_op import OPERATORS, Aggregator
from data_juicer.utils.common_utils import (avg_split_string_list_under_limit,
is_string_list, nested_access,
nested_set)
from data_juicer.utils.model_utils import get_model, prepare_model
from .nested_aggregator import NestedAggregator
OP_NAME = 'entity_attribute_aggregator'
# TODO: LLM-based inference.
@OPERATORS.register_module(OP_NAME)
class EntityAttributeAggregator(Aggregator):
"""
Return conclusion of the given entity's attribute from some docs.
"""
DEFAULT_SYSTEM_TEMPLATE = (
'给定与`{entity}`相关的一些文档,总结`{entity}`的`{attribute}`。\n'
'要求:\n'
'- 尽量使用原文专有名词\n'
'- 联系上下文,自动忽略上下文不一致的细节错误\n'
'- 只对文档中与`{entity}`的`{attribute}`有关的内容进行总结\n'
'- 字数限制在**{word_limit}字以内**\n'
'- 要求输出格式如下:\n'
'# {entity}\n'
'## {attribute}\n'
'...\n'
'{example}')
DEFAULT_EXAMPLE_PROMPT = ('- 例如,根据相关文档总结`孙悟空`的`出身背景`,**100字**以内的样例如下:\n'
'`孙悟空`的`出身背景`总结:\n'
'# 孙悟空\n'
'## 出身背景\n'
'号称齐天大圣,花果山水帘洞的美猴王、西行取经队伍中的大师兄。'
'师父是唐僧玄奘,曾拜菩提祖师学艺。'
'亲生父母未知,自石头中孕育而生。自认斗战胜佛,最怕观世音菩萨和紧箍咒。\n')
DEFAULT_INPUT_TEMPLATE = ('`{entity}`的相关文档:\n'
'{sub_docs}\n\n'
'`{entity}`的`{attribute}`总结:\n')
DEFAULT_OUTPUT_PATTERN_TEMPLATE = r'\#\s*{entity}\s*\#\#\s*{attribute}\s*(.*?)\Z' # noqa: E501
def __init__(self,
api_model: str = 'gpt-4o',
entity: str = None,
attribute: str = None,
input_key: str = None,
output_key: str = None,
word_limit: PositiveInt = 100,
max_token_num: Optional[PositiveInt] = None,
*,
api_endpoint: Optional[str] = None,
response_path: Optional[str] = None,
system_prompt_template: Optional[str] = None,
example_prompt: Optional[str] = None,
input_template: Optional[str] = None,
output_pattern_template: Optional[str] = None,
try_num: PositiveInt = 3,
model_params: Dict = {},
sampling_params: Dict = {},
**kwargs):
"""
Initialization method.
:param api_model: API model name.
:param entity: The given entity.
:param attribute: The given attribute.
:param input_key: The input field key in the samples. Support for
nested keys such as "__dj__stats__.text_len". It is text_key
in default.
:param output_key: The output field key in the samples. Support for
nested keys such as "__dj__stats__.text_len". It is same as the
input_key in default.
:param word_limit: Prompt the output length.
:param max_token_num: The max token num of the total tokens of the
sub documents. Without limitation if it is None.
:param api_endpoint: URL endpoint for the API.
:param response_path: Path to extract content from the API response.
Defaults to 'choices.0.message.content'.
:param system_prompt_template: The system prompt template.
:param example_prompt: The example part in the system prompt.
:param input_template: The input template.
:param output_pattern_template: The output template.
:param try_num: The number of retry attempts when there is an API
call error or output parsing error.
:param model_params: Parameters for initializing the API model.
:param sampling_params: Extra parameters passed to the API call.
e.g {'temperature': 0.9, 'top_p': 0.95}
:param kwargs: Extra keyword arguments.
"""
super().__init__(**kwargs)
if entity is None or attribute is None:
raise ValueError('The entity and attribute cannot be None!')
self.entity = entity
self.attribute = attribute
self.input_key = input_key or self.text_key
self.output_key = output_key or self.input_key
self.word_limit = word_limit
self.max_token_num = max_token_num
system_prompt_template = system_prompt_template or \
self.DEFAULT_SYSTEM_TEMPLATE
self.example_prompt = example_prompt or self.DEFAULT_EXAMPLE_PROMPT
self.input_template = input_template or self.DEFAULT_INPUT_TEMPLATE
output_pattern_template = output_pattern_template or \
self.DEFAULT_OUTPUT_PATTERN_TEMPLATE
self.system_prompt = system_prompt_template.format(
entity=self.entity,
attribute=self.attribute,
word_limit=self.word_limit,
example=self.example_prompt)
self.output_pattern = output_pattern_template.format(
entity=entity, attribute=attribute)
self.sampling_params = sampling_params
self.model_key = prepare_model(model_type='api',
model=api_model,
endpoint=api_endpoint,
response_path=response_path,
return_processor=True,
**model_params)
self.try_num = try_num
self.nested_sum = NestedAggregator(model=api_model,
max_token_num=max_token_num,
api_endpoint=api_endpoint,
response_path=response_path,
try_num=try_num,
model_params=model_params,
sampling_params=sampling_params)
def parse_output(self, response):
pattern = re.compile(self.output_pattern, re.VERBOSE | re.DOTALL)
matches = pattern.findall(response)
if matches:
result = matches[0].strip()
else:
result = ''
return result
def attribute_summary(self, sub_docs, rank=None):
if not sub_docs:
return ''
model, tokenizer = get_model(self.model_key, rank, self.use_cuda())
token_nums = [len(tokenizer.encode(sub_doc)) for sub_doc in sub_docs]
group_docs = avg_split_string_list_under_limit(sub_docs, token_nums,
self.max_token_num)
results = []
for docs in group_docs:
doc_str = '\n\n'.join(docs)
input_prompt = self.input_template.format(entity=self.entity,
attribute=self.attribute,
sub_docs=doc_str)
messages = [{
'role': 'system',
'content': self.system_prompt
}, {
'role': 'user',
'content': input_prompt
}]
result = ''
for i in range(self.try_num):
try:
response = model(messages, **self.sampling_params)
result = self.parse_output(response)
if len(result) > 0:
break
except Exception as e:
logger.warning(f'Exception: {e}')
results.append(result)
return self.nested_sum.recursive_summary(results)
def process_single(self, sample=None, rank=None):
# if not batched sample
sub_docs = nested_access(sample, self.input_key)
if not is_string_list(sub_docs):
return sample
sample = nested_set(sample, self.output_key,
self.attribute_summary(sub_docs, rank=rank))
return sample