oc new-build --name=openshift-spark-py36-inc https://github.com/mmgaggle/openshift-spark#wip-ubi \
--context-dir=openshift-spark-build-inc-py36 \
--strategy=docker
oc logs -f bc/openshift-spark-py36-inc
oc new-build --name=openshift-spark-py36 \
-i openshift-spark-py36-inc:latest \
-e SPARK_URL=http://mmgaggle-bd.s3.amazonaws.com/spark-2.3.2-bin-hadoop-2.8.5.tgz \
-e SPARK_MD5_URL=http://mmgaggle-bd.s3.amazonaws.com/spark-2.3.2-bin-hadoop-2.8.5.tgz.md5 \
--binary
oc start-build openshift-spark-py36
oc logs -f bc/openshift-spark-py36
Using the openshift-spark-py36 image stream as a base, we'll create a jupyter notebook build. The resulting image stream can be utilized by the jupyterhub operator when provisioning notebooks, and will ensure the notebooks have the correct spark client side library versioning necessary to interact with spark clusters provisioned by the spark operator with the openshift-spark-py36 image stream.
oc new-build --name=jupyter-notebook \
https://github.com/mmgaggle/analytics-ml-lab \
--context-dir=notebook \
-i openshift-spark-py36:latest \
--strategy=docker
oc logs -f buildconfig/jupyter-notebook