Skip to content

Latest commit

 

History

History
57 lines (57 loc) · 2.21 KB

2017-07-17-chen17c.md

File metadata and controls

57 lines (57 loc) · 2.21 KB
title booktitle year volume series address month publisher pdf url abstract layout id tex_title bibtex_author firstpage lastpage page order cycles editor author date container-title genre issued extras
Dueling Bandits with Weak Regret
Proceedings of the 34th International Conference on Machine Learning
2017
70
Proceedings of Machine Learning Research
0
PMLR
We consider online content recommendation with implicit feedback through pairwise comparisons, formalized as the so-called dueling bandit problem. We study the dueling bandit problem in the Condorcet winner setting, and consider two notions of regret: the more well-studied strong regret, which is 0 only when both arms pulled are the Condorcet winner; and the less well-studied weak regret, which is 0 if either arm pulled is the Condorcet winner. We propose a new algorithm for this problem, Winner Stays (WS), with variations for each kind of regret: WS for weak regret (WS-W) has expected cumulative weak regret that is $O(N^2)$, and $O(N\log(N))$ if arms have a total order; WS for strong regret (WS-S) has expected cumulative strong regret of $O(N^2 + N \log(T))$, and $O(N\log(N)+N\log(T))$ if arms have a total order. WS-W is the first dueling bandit algorithm with weak regret that is constant in time. WS is simple to compute, even for problems with many arms, and we demonstrate through numerical experiments on simulated and real data that WS has significantly smaller regret than existing algorithms in both the weak- and strong-regret settings.
inproceedings
chen17c
Dueling Bandits with Weak Regret
Bangrui Chen and Peter I. Frazier
731
739
731-739
731
false
given family
Doina
Precup
given family
Yee Whye
Teh
given family
Bangrui
Chen
given family
Peter I.
Frazier
2017-07-17
Proceedings of the 34th International Conference on Machine Learning
inproceedings
date-parts
2017
7
17