title | booktitle | year | volume | series | address | month | publisher | url | abstract | layout | id | tex_title | bibtex_author | firstpage | lastpage | page | order | cycles | editor | author | date | container-title | genre | issued | extras | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Improving Viterbi is Hard: Better Runtimes Imply Faster Clique Algorithms |
Proceedings of the 34th International Conference on Machine Learning |
2017 |
70 |
Proceedings of Machine Learning Research |
0 |
PMLR |
The classic algorithm of Viterbi computes the most likely path in a Hidden Markov Model (HMM) that results in a given sequence of observations. It runs in time |
inproceedings |
backurs17a |
Improving {V}iterbi is Hard: Better Runtimes Imply Faster Clique Algorithms |
Arturs Backurs and Christos Tzamos |
311 |
321 |
311-321 |
311 |
false |
|
|
2017-07-17 |
Proceedings of the 34th International Conference on Machine Learning |
inproceedings |
|
|