diff --git a/create_grid_features.py b/create_grid_features.py index c3714368..4f058e17 100644 --- a/create_grid_features.py +++ b/create_grid_features.py @@ -29,14 +29,14 @@ def main(): # -- Static grid node features -- grid_xy = torch.tensor( np.load(os.path.join(static_dir_path, "nwp_xy.npy")) - ) # (2, N_x, N_y) + ) # (2, N_y, N_x) grid_xy = grid_xy.flatten(1, 2).T # (N_grid, 2) pos_max = torch.max(torch.abs(grid_xy)) grid_xy = grid_xy / pos_max # Divide by maximum coordinate geopotential = torch.tensor( np.load(os.path.join(static_dir_path, "surface_geopotential.npy")) - ) # (N_x, N_y) + ) # (N_y, N_x) geopotential = geopotential.flatten(0, 1).unsqueeze(1) # (N_grid,1) gp_min = torch.min(geopotential) gp_max = torch.max(geopotential) @@ -46,7 +46,7 @@ def main(): grid_border_mask = torch.tensor( np.load(os.path.join(static_dir_path, "border_mask.npy")), dtype=torch.int64, - ) # (N_x, N_y) + ) # (N_y, N_x) grid_border_mask = ( grid_border_mask.flatten(0, 1).to(torch.float).unsqueeze(1) ) # (N_grid, 1) diff --git a/neural_lam/weather_dataset.py b/neural_lam/weather_dataset.py index a782806b..3288ed67 100644 --- a/neural_lam/weather_dataset.py +++ b/neural_lam/weather_dataset.py @@ -16,8 +16,8 @@ class WeatherDataset(torch.utils.data.Dataset): For our dataset: N_t' = 65 N_t = 65//subsample_step (= 21 for 3h steps) - dim_x = 268 - dim_y = 238 + dim_y = 268 + dim_x = 238 N_grid = 268x238 = 63784 d_features = 17 (d_features' = 18) d_forcing = 5 @@ -87,7 +87,7 @@ def __getitem__(self, idx): try: full_sample = torch.tensor( np.load(sample_path), dtype=torch.float32 - ) # (N_t', dim_x, dim_y, d_features') + ) # (N_t', dim_y, dim_x, d_features') except ValueError: print(f"Failed to load {sample_path}") @@ -101,40 +101,40 @@ def __getitem__(self, idx): sample = full_sample[ subsample_index : subsample_end_index : self.subsample_step ] - # (N_t, dim_x, dim_y, d_features') + # (N_t, dim_y, dim_x, d_features') # Remove feature 15, "z_height_above_ground" sample = torch.cat( (sample[:, :, :, :15], sample[:, :, :, 16:]), dim=3 - ) # (N_t, dim_x, dim_y, d_features) + ) # (N_t, dim_y, dim_x, d_features) # Accumulate solar radiation instead of just subsampling - rad_features = full_sample[:, :, :, 2:4] # (N_t', dim_x, dim_y, 2) + rad_features = full_sample[:, :, :, 2:4] # (N_t', dim_y, dim_x, 2) # Accumulate for first time step init_accum_rad = torch.sum( rad_features[: (subsample_index + 1)], dim=0, keepdim=True - ) # (1, dim_x, dim_y, 2) + ) # (1, dim_y, dim_x, 2) # Accumulate for rest of subsampled sequence in_subsample_len = ( subsample_end_index - self.subsample_step + subsample_index + 1 ) rad_features_in_subsample = rad_features[ (subsample_index + 1) : in_subsample_len - ] # (N_t*, dim_x, dim_y, 2), N_t* = (N_t-1)*ss_step - _, dim_x, dim_y, _ = sample.shape + ] # (N_t*, dim_y, dim_x, 2), N_t* = (N_t-1)*ss_step + _, dim_y, dim_x, _ = sample.shape rest_accum_rad = torch.sum( rad_features_in_subsample.view( self.original_sample_length - 1, self.subsample_step, - dim_x, dim_y, + dim_x, 2, ), dim=1, - ) # (N_t-1, dim_x, dim_y, 2) + ) # (N_t-1, dim_y, dim_x, 2) accum_rad = torch.cat( (init_accum_rad, rest_accum_rad), dim=0 - ) # (N_t, dim_x, dim_y, 2) + ) # (N_t, dim_y, dim_x, 2) # Replace in sample sample[:, :, :, 2:4] = accum_rad @@ -168,7 +168,7 @@ def __getitem__(self, idx): np.load(water_path), dtype=torch.float32 ).unsqueeze( -1 - ) # (dim_x, dim_y, 1) + ) # (dim_y, dim_x, 1) # Flatten water_cover_features = water_cover_features.flatten(0, 1) # (N_grid, 1) # Expand over temporal dimension @@ -183,7 +183,7 @@ def __getitem__(self, idx): ) flux = torch.tensor(np.load(flux_path), dtype=torch.float32).unsqueeze( -1 - ) # (N_t', dim_x, dim_y, 1) + ) # (N_t', dim_y, dim_x, 1) if self.standardize: flux = (flux - self.flux_mean) / self.flux_std