forked from numactl/numactl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
stream_lib.c
266 lines (215 loc) · 6.19 KB
/
stream_lib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <sys/time.h>
#include <stdlib.h>
#include "stream_lib.h"
static inline double mysecond(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec + tv.tv_usec * 1.e-6;
}
/*
* Program: Stream
* Programmer: Joe R. Zagar
* Revision: 4.0-BETA, October 24, 1995
* Original code developed by John D. McCalpin
*
* This program measures memory transfer rates in MB/s for simple
* computational kernels coded in C. These numbers reveal the quality
* of code generation for simple uncacheable kernels as well as showing
* the cost of floating-point operations relative to memory accesses.
*
* INSTRUCTIONS:
*
* 1) Stream requires a good bit of memory to run. Adjust the
* value of 'N' (below) to give a 'timing calibration' of
* at least 20 clock-ticks. This will provide rate estimates
* that should be good to about 5% precision.
*
* Hacked by AK to be a library
*/
long N = 8000000;
#define NTIMES 10
#define OFFSET 0
/*
* 3) Compile the code with full optimization. Many compilers
* generate unreasonably bad code before the optimizer tightens
* things up. If the results are unreasonably good, on the
* other hand, the optimizer might be too smart for me!
*
* Try compiling with:
* cc -O stream_d.c second_wall.c -o stream_d -lm
*
* This is known to work on Cray, SGI, IBM, and Sun machines.
*
*
* 4) Mail the results to [email protected]
* Be sure to include:
* a) computer hardware model number and software revision
* b) the compiler flags
* c) all of the output from the test case.
* Thanks!
*
*/
int checktick(void);
# define HLINE "-------------------------------------------------------------\n"
# ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
# endif
# ifndef MAX
# define MAX(x,y) ((x)>(y)?(x):(y))
# endif
static double *a, *b, *c;
static double rmstime[4] = { 0 }, maxtime[4] = {
0}, mintime[4] = {
FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX};
static char *label[4] = { "Copy: ", "Scale: ",
"Add: ", "Triad: "
};
char *stream_names[] = { "Copy","Scale","Add","Triad" };
static double bytes[4];
int stream_verbose = 1;
#define Vprintf(x...) do { if (stream_verbose) printf(x); } while(0)
void stream_check(void)
{
int quantum;
int BytesPerWord;
register int j;
double t;
/* --- SETUP --- determine precision and check timing --- */
Vprintf(HLINE);
BytesPerWord = sizeof(double);
Vprintf("This system uses %d bytes per DOUBLE PRECISION word.\n",
BytesPerWord);
Vprintf(HLINE);
Vprintf("Array size = %lu, Offset = %d\n", N, OFFSET);
Vprintf("Total memory required = %.1f MB.\n",
(3 * N * BytesPerWord) / 1048576.0);
Vprintf("Each test is run %d times, but only\n", NTIMES);
Vprintf("the *best* time for each is used.\n");
/* Get initial value for system clock. */
for (j = 0; j < N; j++) {
a[j] = 1.0;
b[j] = 2.0;
c[j] = 0.0;
}
Vprintf(HLINE);
if ((quantum = checktick()) >= 1)
Vprintf("Your clock granularity/precision appears to be "
"%d microseconds.\n", quantum);
else
Vprintf("Your clock granularity appears to be "
"less than one microsecond.\n");
t = mysecond();
for (j = 0; j < N; j++)
a[j] = 2.0E0 * a[j];
t = 1.0E6 * (mysecond() - t);
Vprintf("Each test below will take on the order"
" of %d microseconds.\n", (int) t);
Vprintf(" (= %d clock ticks)\n", (int) (t / quantum));
Vprintf("Increase the size of the arrays if this shows that\n");
Vprintf("you are not getting at least 20 clock ticks per test.\n");
Vprintf(HLINE);
Vprintf("WARNING -- The above is only a rough guideline.\n");
Vprintf("For best results, please be sure you know the\n");
Vprintf("precision of your system timer.\n");
Vprintf(HLINE);
}
void stream_test(double *res)
{
register int j, k;
double scalar, times[4][NTIMES];
/* --- MAIN LOOP --- repeat test cases NTIMES times --- */
scalar = 3.0;
for (k = 0; k < NTIMES; k++) {
times[0][k] = mysecond();
for (j = 0; j < N; j++)
c[j] = a[j];
times[0][k] = mysecond() - times[0][k];
times[1][k] = mysecond();
for (j = 0; j < N; j++)
b[j] = scalar * c[j];
times[1][k] = mysecond() - times[1][k];
times[2][k] = mysecond();
for (j = 0; j < N; j++)
c[j] = a[j] + b[j];
times[2][k] = mysecond() - times[2][k];
times[3][k] = mysecond();
for (j = 0; j < N; j++)
a[j] = b[j] + scalar * c[j];
times[3][k] = mysecond() - times[3][k];
}
/* --- SUMMARY --- */
for (k = 0; k < NTIMES; k++) {
for (j = 0; j < 4; j++) {
rmstime[j] =
rmstime[j] + (times[j][k] * times[j][k]);
mintime[j] = MIN(mintime[j], times[j][k]);
maxtime[j] = MAX(maxtime[j], times[j][k]);
}
}
Vprintf
("Function Rate (MB/s) RMS time Min time Max time\n");
for (j = 0; j < 4; j++) {
double speed = 1.0E-06 * bytes[j] / mintime[j];
rmstime[j] = sqrt(rmstime[j] / (double) NTIMES);
Vprintf("%s%11.4f %11.4f %11.4f %11.4f\n", label[j],
speed,
rmstime[j], mintime[j], maxtime[j]);
if (res)
res[j] = speed;
}
}
# define M 20
int checktick(void)
{
int i, minDelta, Delta;
double t1, t2, timesfound[M];
/* Collect a sequence of M unique time values from the system. */
for (i = 0; i < M; i++) {
t1 = mysecond();
while (((t2 = mysecond()) - t1) < 1.0E-6);
timesfound[i] = t1 = t2;
}
/*
* Determine the minimum difference between these M values.
* This result will be our estimate (in microseconds) for the
* clock granularity.
*/
minDelta = 1000000;
for (i = 1; i < M; i++) {
Delta =
(int) (1.0E6 * (timesfound[i] - timesfound[i - 1]));
minDelta = MIN(minDelta, MAX(Delta, 0));
}
return (minDelta);
}
void stream_setmem(unsigned long size)
{
N = (size - OFFSET) / (3*sizeof(double));
}
long stream_memsize(void)
{
return 3*(sizeof(double) * (N+OFFSET)) ;
}
long stream_init(void *mem)
{
int i;
for (i = 0; i < 4; i++) {
rmstime[i] = 0;
maxtime[i] = 0;
mintime[i] = FLT_MAX;
}
bytes[0] = 2 * sizeof(double) * N;
bytes[1] = 2 * sizeof(double) * N;
bytes[2] = 3 * sizeof(double) * N;
bytes[3] = 3 * sizeof(double) * N;
a = mem;
b = (double *)mem + (N+OFFSET);
c = (double *)mem + 2*(N+OFFSET);
stream_check();
return 0;
}