forked from uber-research/deconstructing-lottery-tickets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
411 lines (329 loc) · 18.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Copyright (c) 2019 Uber Technologies, Inc.
# Licensed under the Uber Non-Commercial License (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at the root directory of this project.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from __future__ import division
import tensorflow as tf
import numpy as np
import time
import h5py
import argparse
import os
import sys
from math import ceil
import network_builders
from tf_plus import Conv2D, MaxPooling2D, Flatten, Dense, relu, Activation
from tf_plus import Layers, SequentialNetwork, l2reg
from tf_plus import learning_phase, batchnorm_learning_phase
from tf_plus import add_classification_losses
from tf_plus import hist_summaries_train, get_collection_intersection, get_collection_intersection_summary, log_scalars, sess_run_dict
from tf_plus import summarize_weights, summarize_opt, tf_assert_all_init, tf_get_uninitialized_variables, add_grad_summaries
def make_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--train_h5', type=str, required=True)
parser.add_argument('--test_h5', type=str, required=True)
parser.add_argument('--val_h5', type=str, required=True)
parser.add_argument('--seed', type=int)
parser.add_argument('--save_weights', action='store_true', help='save gradients and weights to file')
parser.add_argument('--save_loss', action='store_true', help='save loss and accuracy to file')
parser.add_argument('--input_dim', type=str, default='28,28,1', help='mnist: 28,28,1; cifar: 32,32,3')
parser.add_argument('--arch', type=str, default='fc_lot', choices=('fc_lot', 'conv2_lot', 'conv4_lot', 'conv6_lot'), help='network architecture')
#optimization params
parser.add_argument('--opt', type=str, default='sgd', choices=('sgd', 'rmsprop', 'adam'))
parser.add_argument('--lr', type=float, default=.01, help='suggested: .01 sgd, .001 rmsprop, .0001 adam')
parser.add_argument('--decay_lr', action='store_true', help='decay learning rate')
parser.add_argument('--decay_schedule', type=str, default = '10,20,50,-1', help = 'comma-separated list')
parser.add_argument('--mom', type=float, default=.9, help='momentum (only has effect for sgd/rmsprop)')
parser.add_argument('--l2', type=float, default=0)
parser.add_argument('--num_epochs', type=int, default=1, help='number of epochs')
parser.add_argument('--train_batch_size', type=int, default=60)
parser.add_argument('--large_batch_size', type=int, default=5000, help='mnist: 11000, cifar: 5000')
parser.add_argument('--test_batch_size', type=int, default=0) # do 0 for all
parser.add_argument('--val_batch_size', type=int, default=0) # do 0 for all
parser.add_argument('--no_shuffle', action='store_true')
parser.add_argument('--print_every', type=int, default=100, help='print status update every n iterations')
parser.add_argument('--output_dir', type=str, default=os.environ.get('GIT_RESULTS_MANAGER_DIR', None), help='output directory')
parser.add_argument('--eval_every', type=int, default=1, help='eval on entire set')
parser.add_argument('--log_every', type=int, default=5, help='save tb batch acc/loss every n iterations')
parser.add_argument('--mode', type = str, default = 'save_all', choices = ('save_all', 'save_res'))
return parser
def read_input_data(filename):
input_file = h5py.File(filename, 'r')
x = np.array(input_file.get('images'))
y = np.array(input_file.get('labels'))
input_file.close()
return x, y
################# model setup, after architecture is already created
def init_model(model, input_dim):
img_size = tuple([None] + [int(dim) for dim in input_dim.split(',')])
input_images = tf.placeholder(dtype='float32', shape=img_size)
input_labels = tf.placeholder(dtype='int64', shape=(None,))
#adding things to trackable
model.a('input_images', input_images)
model.a('input_labels', input_labels)
model.a('logits', model(input_images)) # logits is y_pred
def define_training(model, args):
# define optimizer
input_lr = tf.placeholder(tf.float32, shape=[]) # placeholder for dynamic learning rate
model.a('input_lr', input_lr)
if args.opt == 'sgd':
optimizer = tf.train.MomentumOptimizer(input_lr, args.mom)
elif args.opt == 'rmsprop':
optimizer = tf.train.RMSPropOptimizer(input_lr, momentum=args.mom)
elif args.opt == 'adam':
optimizer = tf.train.AdamOptimizer(input_lr)
model.a('optimizer', optimizer)
# This adds prob, cross_ent, loss_cross_ent, class_prediction,
# prediction_correct, accuracy, loss, (loss_reg) in tf_nets/losses.py
add_classification_losses(model, model.input_labels)
grads_and_vars = optimizer.compute_gradients(model.loss, model.trainable_weights, gate_gradients=tf.train.Optimizer.GATE_GRAPH)
model.a('grads_to_compute', [grad for grad, _ in grads_and_vars])
model.a('train_step', optimizer.apply_gradients(grads_and_vars))
print('All model weights:')
summarize_weights(model.trainable_weights) #print summaries for weights (from tfutil)
# print('grad summaries:')
# add_grad_summaries(grads_and_vars)
# print('opt summary:')
# summarize_opt(optimizer)
################# util for training/eval portion
# flatten and concatentate list of tensors into one np vector
def flatten_all(tensors):
return np.concatenate([tensor.eval().flatten() for tensor in tensors])
# eval on whole train/test set occasionally, for tuning purposes
def eval_on_entire_dataset(sess, model, input_x, input_y, dim_sum, batch_size, tb_prefix, tb_writer, iterations):
grad_sums = np.zeros(dim_sum)
num_batches = int(input_y.shape[0] / batch_size)
total_acc = 0
total_loss = 0
total_loss_no_reg = 0 # loss without counting l2 penalty
for i in range(num_batches):
# slice indices (should be large)
s_start = batch_size * i
s_end = s_start + batch_size
fetch_dict = {
'accuracy': model.accuracy,
'loss': model.loss,
'loss_no_reg': model.loss_cross_ent}
#sess_run_dict is from tfutil and it returns a dictionary
result_dict = sess_run_dict(sess, fetch_dict, feed_dict={
model.input_images: input_x[s_start:s_end],
model.input_labels: input_y[s_start:s_end],
learning_phase(): 0,
batchnorm_learning_phase(): 1}) # do not use nor update moving averages (****??****)
total_acc += result_dict['accuracy']
total_loss += result_dict['loss']
total_loss_no_reg += result_dict['loss_no_reg']
acc = total_acc / num_batches
loss = total_loss / num_batches
loss_no_reg = total_loss_no_reg / num_batches
# tensorboard
if tb_writer:
summary = tf.Summary()
summary.value.add(tag='%s_acc' % tb_prefix, simple_value=acc)
summary.value.add(tag='%s_loss' % tb_prefix, simple_value=loss)
summary.value.add(tag='%s_loss_no_reg' % tb_prefix, simple_value=loss_no_reg)
tb_writer.add_summary(summary, iterations)
return acc, loss_no_reg
#################
def train_and_eval(sess, model, snip_batch_size, train_x, train_y, val_x, val_y, test_x, test_y, tb_writer, dsets, args):
# constants
num_batches = int(train_y.shape[0] / args.train_batch_size)
dim_sum = sum([tf.size(var).eval() for var in model.trainable_weights]) #dimention of weight matrices
# adaptive learning schedule
curr_lr = args.lr
decay_schedule = [int(x) for x in args.decay_schedule.split(',')]
print(decay_schedule)
decay_count = 0
# initializations
tb_summaries = tf.summary.merge(tf.get_collection('train_step'))
shuffled_indices = np.arange(train_y.shape[0]) # for no shuffling
iterations = 0
chunks_written = 0
timerstart = time.time()
iter_index = 0
if args.save_weights:
dsets['all_weights'][chunks_written] = flatten_all(model.trainable_weights)
chunks_written += 1
dsets['one_iter_grads'][0] = calc_one_iter_grads(sess, model, train_x, train_y, snip_batch_size, dsets)
for epoch in range(args.num_epochs):
if not args.no_shuffle:
shuffled_indices = np.random.permutation(train_y.shape[0]) # for shuffled mini-batches
if args.decay_lr and epoch == decay_schedule[decay_count]:
curr_lr *= 0.1
decay_count += 1
print('dropping learning rate to ' + str(curr_lr))
for i in range(num_batches):
# less frequent, larger evals
if iterations % args.eval_every == 0:
# eval on entire train set
cur_train_acc, cur_train_loss = eval_on_entire_dataset(sess, model, train_x, train_y,
dim_sum, args.large_batch_size, 'eval_train', tb_writer, iterations)
# eval on entire test/val set
cur_test_acc, cur_test_loss = eval_on_entire_dataset(sess, model, test_x, test_y,
dim_sum, args.test_batch_size, 'eval_test', tb_writer, iterations)
cur_val_acc, cur_val_loss = eval_on_entire_dataset(sess, model, val_x, val_y,
dim_sum, args.val_batch_size, 'eval_val', tb_writer, iterations)
if args.save_loss:
dsets['train_accuracy'][iter_index] = cur_train_acc
dsets['train_loss'][iter_index] = cur_train_loss
dsets['val_accuracy'][iter_index] = cur_val_acc
dsets['val_loss'][iter_index] = cur_val_loss
dsets['test_accuracy'][iter_index] = cur_test_acc
dsets['test_loss'][iter_index] = cur_test_loss
iter_index += 1
# print status update
if iterations % args.print_every == 0:
print(('{}: train acc = {:.4f}, val acc = {:.4f}, test acc = {:.4f}, '
+ 'train loss = {:.4f}, val loss = {:.4f}, test loss = {:.4f} ({:.2f} s)').format(iterations,
cur_train_acc, cur_val_acc, cur_test_acc, cur_train_loss, cur_val_loss, cur_test_loss, time.time() - timerstart))
# current slice for input data
batch_indices = shuffled_indices[args.train_batch_size * i : args.train_batch_size * (i + 1)]
# training
fetch_dict = {'train_step': model.train_step,
'accuracy': model.accuracy,
'loss': model.loss}
fetch_dict.update(model.update_dict())
if iterations % args.log_every == 0:
fetch_dict.update({'tb': tb_summaries})
result_train = sess_run_dict(sess, fetch_dict, feed_dict={
model.input_images: train_x[batch_indices],
model.input_labels: train_y[batch_indices],
model.input_lr: curr_lr,
learning_phase(): 1,
batchnorm_learning_phase(): 1})
# log to tensorboard
if tb_writer and iterations % args.log_every == 0:
tb_writer.add_summary(result_train['tb'], iterations)
iterations += 1
if iterations == 1:
dsets['all_weights'][chunks_written] = flatten_all(model.trainable_weights)
chunks_written += 1
# store current weights and gradients
if args.mode == 'save_all' and args.save_weights and iterations % args.eval_every == 0:
dsets['all_weights'][chunks_written] = flatten_all(model.trainable_weights)
chunks_written += 1
# save final weight values
if args.save_weights and iterations % args.eval_every != 0:
dsets['all_weights'][chunks_written] = flatten_all(model.trainable_weights)
# save final evals
# on entire train set
cur_train_acc, cur_train_loss = eval_on_entire_dataset(sess, model, train_x, train_y,
dim_sum, args.large_batch_size, 'eval_train', tb_writer, iterations)
# on entire test/val set
cur_test_acc, cur_test_loss = eval_on_entire_dataset(sess, model, test_x, test_y,
dim_sum, args.test_batch_size, 'eval_test', tb_writer, iterations)
cur_val_acc, cur_val_loss = eval_on_entire_dataset(sess, model, val_x, val_y,
dim_sum, args.val_batch_size, 'eval_val', tb_writer, iterations)
if args.save_loss and iterations % args.eval_every != 0:
dsets['train_accuracy'][iter_index] = cur_train_acc
dsets['train_loss'][iter_index] = cur_train_loss
dsets['test_accuracy'][iter_index] = cur_test_acc
dsets['test_loss'][iter_index] = cur_test_loss
dsets['val_accuracy'][iter_index] = cur_val_acc
dsets['val_loss'][iter_index] = cur_val_loss
# print last status update
print(('{}: train acc = {:.4f}, val acc = {:.4f}, test acc = {:.4f}, '
+ 'train loss = {:.4f}, val loss = {:.4f}, test loss = {:.4f} ({:.2f} s)').format(iterations,
cur_train_acc, cur_val_acc, cur_test_acc, cur_train_loss, cur_val_loss, cur_test_loss, time.time() - timerstart))
# loads weights, calculates train and test gradients, writes to file at given iteration
def calc_one_iter_grads(sess, model, train_x, train_y, snip_batch_size, dsets):
train_size = train_x.shape[0]
batch_ind = np.random.choice(range(train_size), size=snip_batch_size, replace=False)
fetch_dict = {}
fetch_dict['gradients'] = model.grads_to_compute
result_dict = sess_run_dict(sess, fetch_dict, feed_dict={
model.input_images: train_x[batch_ind],
model.input_labels: train_y[batch_ind],
learning_phase(): 0,
batchnorm_learning_phase(): 1})
grads = result_dict['gradients']
flattened = np.concatenate([grad.flatten() for grad in grads])
return flattened
def main():
parser = make_parser()
args = parser.parse_args()
np.random.seed(args.seed)
tf.set_random_seed(args.seed)
# load data
train_x, train_y = read_input_data(args.train_h5)
val_x, val_y = read_input_data(args.val_h5)
test_x, test_y = read_input_data(args.test_h5)
images_scale = np.max(train_x)
if images_scale > 1:
print('Normalizing images by a factor of {}'.format(images_scale))
train_x = train_x / images_scale
val_x = val_x / images_scale
test_x = test_x / images_scale
if args.test_batch_size == 0:
args.test_batch_size = test_y.shape[0]
if args.val_batch_size == 0:
args.val_batch_size = val_y.shape[0]
print('Data shapes:', train_x.shape, train_y.shape, test_x.shape, test_y.shape)
if train_y.shape[0] % args.train_batch_size != 0:
print("WARNING batch size doesn't divide train set evenly")
if train_y.shape[0] % args.large_batch_size != 0:
print("WARNING large batch size doesn't divide train set evenly")
if test_y.shape[0] % args.test_batch_size != 0:
print("WARNING batch size doesn't divide test set evenly")
if val_y.shape[0] % args.val_batch_size != 0:
print("WARNING batch size doesn't divide validation set evenly")
if 'mnist' in args.train_h5:
input_dim = '28,28,1'
snip_batch_size = 100
elif 'cifar10' in args.train_h5:
input_dim = '32,32,3'
snip_batch_size = 128
# build model
if args.arch == 'fc_lot':
model = network_builders.build_fc_lottery(args)
elif args.arch == 'conv2_lot':
model = network_builders.build_conv2_lottery(args)
elif args.arch == 'conv4_lot':
model = network_builders.build_conv4_lottery(args)
elif args.arch == 'conv6_lot':
model = network_builders.build_conv6_lottery(args)
init_model(model, input_dim)
define_training(model, args)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
for collection in ['train_step']: # 'eval_train' and 'eval_test' added manually later
tf.summary.scalar(collection + '_acc', model.accuracy, collections=[collection])
tf.summary.scalar(collection + '_loss', model.loss, collections=[collection])
tb_writer, hf = None, None
dsets = {}
if args.output_dir:
tb_writer = tf.summary.FileWriter(args.output_dir, sess.graph)
# set up output for gradients/weights
if args.save_weights:
dim_sum = sum([tf.size(var).eval() for var in model.trainable_weights])
total_iters = args.num_epochs * int(train_y.shape[0] / args.train_batch_size)
if args.mode == 'save_all':
total_chunks = int(ceil(total_iters / args.eval_every))
elif args.mode == 'save_res':
total_chunks = 1
hf = h5py.File(args.output_dir + '/weights', 'w-')
# write metadata
var_shapes = np.string_(';'.join([str(var.get_shape()) for var in model.trainable_weights]))
hf.attrs['var_shapes'] = var_shapes
var_names = np.string_(';'.join([str(var.name) for var in model.trainable_weights]))
hf.attrs['var_names'] = var_names
dsets['all_weights'] = hf.create_dataset('all_weights', (total_chunks + 2, dim_sum), dtype='f8', compression='gzip')
dsets['one_iter_grads'] = hf.create_dataset('one_iter_grads', (1, dim_sum), dtype='f8', compression='gzip')
if args.save_loss:
dsets['train_accuracy'] = hf.create_dataset('train_accuracy', (int(ceil(total_iters / args.eval_every)) + 1, 1), dtype='f8', compression='gzip')
dsets['train_loss'] = hf.create_dataset('train_loss', (int(ceil(total_iters / args.eval_every)) + 1, 1), dtype='f8', compression='gzip')
dsets['val_accuracy'] = hf.create_dataset('val_accuracy', (int(ceil(total_iters / args.eval_every)) + 1, 1), dtype='f8', compression='gzip')
dsets['val_loss'] = hf.create_dataset('val_loss', (int(ceil(total_iters / args.eval_every)) + 1, 1), dtype='f8', compression='gzip')
dsets['test_accuracy'] = hf.create_dataset('test_accuracy', (int(ceil(total_iters / args.eval_every)) + 1, 1), dtype='f8', compression='gzip')
dsets['test_loss'] = hf.create_dataset('test_loss', (int(ceil(total_iters / args.eval_every)) + 1, 1), dtype='f8', compression='gzip')
########## Run main thing ##########
train_and_eval(sess, model, snip_batch_size, train_x, train_y, val_x, val_y, test_x, test_y, tb_writer, dsets, args)
if tb_writer:
tb_writer.close()
if hf:
hf.close()
if __name__ == '__main__':
main()