-
Notifications
You must be signed in to change notification settings - Fork 3
/
sdram.v
151 lines (128 loc) · 5.35 KB
/
sdram.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
//
// sdram.v
//
// sdram controller implementation for the MiST board
// https://github.com/mist-devel
//
// Copyright (c) 2015 Till Harbaum <[email protected]>
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
module sdram (
// interface to the MT48LC16M16 chip
inout [15:0] sd_data, // 16 bit bidirectional data bus
output reg [12:0] sd_addr, // 13 bit multiplexed address bus
output reg [1:0] sd_dqm, // two byte masks
output reg[1:0] sd_ba, // two banks
output sd_cs, // a single chip select
output sd_we, // write enable
output sd_ras, // row address select
output sd_cas, // columns address select
// cpu/chipset interface
input init, // init signal after FPGA config to initialize RAM
input clk, // sdram is accessed at up to 128MHz
input clkref, // reference clock to sync to
input [15:0] din, // data input from chipset/cpu
output [15:0] dout, // data output to chipset/cpu
input [24:0] addr, // 25 bit word address
input uds, // data strobe for hi byte
input lds, // data strobe for low byte
input oe, // cpu/chipset requests read
input we // cpu/chipset requests write
);
// no burst configured
localparam RASCAS_DELAY = 3'd3; // tRCD>=20ns -> 2 cycles@64MHz
localparam BURST_LENGTH = 3'b000; // 000=none, 001=2, 010=4, 011=8
localparam ACCESS_TYPE = 1'b0; // 0=sequential, 1=interleaved
localparam CAS_LATENCY = 3'd3; // 2/3 allowed
localparam OP_MODE = 2'b00; // only 00 (standard operation) allowed
localparam NO_WRITE_BURST = 1'b1; // 0= write burst enabled, 1=only single access write
localparam MODE = { 3'b000, NO_WRITE_BURST, OP_MODE, CAS_LATENCY, ACCESS_TYPE, BURST_LENGTH};
// ---------------------------------------------------------------------
// ------------------------ cycle state machine ------------------------
// ---------------------------------------------------------------------
localparam STATE_IDLE = 3'd0; // first state in cycle
localparam STATE_CMD_START = 3'd1; // state in which a new command can be started
localparam STATE_CMD_CONT = STATE_CMD_START + RASCAS_DELAY - 3'd1; // 4 command can be continued
localparam STATE_LAST = 3'd7; // last state in cycle
reg [2:0] q /* synthesis noprune */;
always @(posedge clk) begin
// 32Mhz counter synchronous to 4 Mhz clock
// force counter to pass state 5->6 exactly after the rising edge of clkref
// since clkref is two clocks early
if(((q == 7) && ( clkref == 0)) ||
((q == 0) && ( clkref == 1)) ||
((q != 7) && (q != 0)))
q <= q + 3'd1;
end
// ---------------------------------------------------------------------
// --------------------------- startup/reset ---------------------------
// ---------------------------------------------------------------------
// wait 1ms (32 clkref cycles) after FPGA config is done before going
// into normal operation. Initialize the ram in the last 16 reset cycles (cycles 15-0)
reg [4:0] reset;
always @(posedge clk) begin
if(init) reset <= 5'h1f;
else if((q == STATE_LAST) && (reset != 0))
reset <= reset - 5'd1;
end
// ---------------------------------------------------------------------
// ------------------ generate ram control signals ---------------------
// ---------------------------------------------------------------------
// all possible commands
localparam CMD_INHIBIT = 4'b1111;
localparam CMD_NOP = 4'b0111;
localparam CMD_ACTIVE = 4'b0011;
localparam CMD_READ = 4'b0101;
localparam CMD_WRITE = 4'b0100;
localparam CMD_BURST_TERMINATE = 4'b0110;
localparam CMD_PRECHARGE = 4'b0010;
localparam CMD_AUTO_REFRESH = 4'b0001;
localparam CMD_LOAD_MODE = 4'b0000;
reg [3:0] sd_cmd; // current command sent to sd ram
// drive control signals according to current command
assign sd_cs = sd_cmd[3];
assign sd_ras = sd_cmd[2];
assign sd_cas = sd_cmd[1];
assign sd_we = sd_cmd[0];
assign sd_data = we?din:16'bZZZZZZZZZZZZZZZZ;
assign dout = sd_data;
always @(posedge clk) begin
sd_cmd <= CMD_INHIBIT;
if(reset != 0) begin
sd_ba <= 2'b00;
sd_dqm <= 2'b00;
if(reset == 13) sd_addr <= 13'b0010000000000;
else sd_addr <= MODE;
if(q == STATE_IDLE) begin
if(reset == 13) sd_cmd <= CMD_PRECHARGE;
if(reset == 2) sd_cmd <= CMD_LOAD_MODE;
end
end else begin
if(q <= STATE_CMD_START) begin
sd_addr <= addr[20:8];
sd_ba <= addr[22:21];
sd_dqm <= { !uds, !lds };
end else
sd_addr <= { 4'b0010, addr[23], addr[7:0]};
if(q == STATE_IDLE) begin
if(we || oe) sd_cmd <= CMD_ACTIVE;
else sd_cmd <= CMD_AUTO_REFRESH;
end else if(q == STATE_CMD_CONT) begin
if(we) sd_cmd <= CMD_WRITE;
else if(oe) sd_cmd <= CMD_READ;
end
end
end
endmodule