forked from oreillymedia/Learning-OpenCV-3_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example_20-01.cpp
77 lines (74 loc) · 2.76 KB
/
example_20-01.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
//Example 20-01. Using K-means
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
static void help(char* argv[]) {
cout << "\nThis program demonstrates kmeans clustering.\n"
" It generates an image with random points, then assigns a random number\n"
" of cluster centers and uses kmeans to move those cluster centers to their\n"
" representative location\n"
"Usage:\n"
<< argv[0] << "\n\n"
<< "ESC or 'q' or 'Q' to quit\n\n"<< endl;
}
int main(int argc, char** argv) {
help(argv);
const int MAX_CLUSTERS = 5;
cv::Scalar colorTab[] = {
cv::Scalar( 0, 0, 255 ),
cv::Scalar( 0, 255, 0 ),
cv::Scalar( 255, 100, 100 ),
cv::Scalar( 255, 0, 255 ),
cv::Scalar( 0, 255, 255 )
};
cv::Mat img(500, 500, CV_8UC3);
cv::RNG rng(12345);
for(;;) {
int clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
int sampleCount = rng.uniform(1, 1001);
cv::Mat points(sampleCount, 1, CV_32FC2), labels;
clusterCount = MIN(clusterCount, sampleCount);
cv::Mat centers(clusterCount, 1, points.type());
/* generate random sample from multigaussian distribution */
for(int k = 0; k < clusterCount; k++) {
cv::Point center;
center.x = rng.uniform(0, img.cols);
center.y = rng.uniform(0, img.rows);
cv::Mat pointChunk = points.rowRange(
k*sampleCount/clusterCount,
k == clusterCount - 1 ? sampleCount : (k+1)*sampleCount/clusterCount
);
rng.fill(
pointChunk,
cv::RNG::NORMAL,
cv::Scalar(center.x, center.y),
cv::Scalar(img.cols*0.05, img.rows*0.05)
);
}
randShuffle(points, 1, &rng);
kmeans(
points,
clusterCount,
labels,
cv::TermCriteria(
cv::TermCriteria::EPS | cv::TermCriteria::COUNT,
10,
1.0
),
3,
cv::KMEANS_PP_CENTERS,
centers
);
img = cv::Scalar::all(0);
for(int i = 0; i < sampleCount; i++) {
int clusterIdx = labels.at<int>(i);
cv::Point ipt = points.at<cv::Point2f>(i);
cv::circle(img, ipt, 2, colorTab[clusterIdx], cv::FILLED, cv::LINE_AA);
}
cv::imshow("Example 20-01", img);
char key = (char)cv::waitKey();
if(key == 27 || key == 'q' || key == 'Q') // 'ESC'
break;
}
return 0;
}