forked from khanrc/tf-mobilenet-v2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
358 lines (309 loc) · 16.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
import sys
import logging
import fire
import cv2
import numpy as np
import tensorflow as tf
from tensorflow.contrib import slim
from tensorpack.dataflow import imgaug
from tensorpack.graph_builder import override_to_local_variable
from checkmate.checkmate import BestCheckpointSaver, get_best_checkpoint
from mobilenet_v2 import mobilenet_v2_arg_scope, mobilenet_v2_cls
from data_helper import get_imagenet_dataflow, GoogleNetResize, DATA_PER_EPOCH, DataFlowToQueue, get_augmentations
from train_helper import allreduce_grads, split_grad_list, merge_grad_list, get_post_init_ops
logger = logging.getLogger('Runner')
logger.setLevel(logging.DEBUG)
logger.propagate = False
ch = logging.StreamHandler(sys.stdout)
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
ch.setFormatter(formatter)
logger.handlers = []
logger.addHandler(ch)
logger_s = logging.getLogger('tensorpack')
logger_s.setLevel(logging.WARNING)
author_dir = '/data/public/ro/dataset/images/imagenet/ILSVRC/2012/object_localization/ILSVRC/Data/CLS-LOC'
class MobilenetRunner:
def __init__(self):
# hyperparameters & meta data
self.__op_decay_steps_epoch = 1
self.__interval_train_log_epoch = 0.1
self.__interval_valid_log_epoch = 1.0
# persistent tensorflow sessions
self.persistent_sess = tf.Session(config=tf.ConfigProto())
self.global_step = tf.Variable(0, trainable=False)
self.global_step_add = tf.assign(self.global_step, self.global_step + 1)
self.is_training = tf.placeholder(tf.bool, name='is_training')
# tensors for training
self.ph_train_image = tf.placeholder(tf.float32, shape=(None, 224, 224, 3), name='image_train')
self.ph_train_label = tf.placeholder(tf.int32, shape=(None, ), name='label_train')
self.output_train = None
self.loss_train = None
self.acc_train_top1 = None
self.acc_train_top5 = None
self.optimizers = []
self.optimize_op = None
self.sync_op = None
self.enqueue_threads = None
self.learning_rate = None
# tensors for validation
self.ph_valid_image = tf.placeholder(tf.float32, shape=(None, 224, 224, 3), name='image_valid')
self.ph_valid_label = tf.placeholder(tf.int32, shape=(None,), name='label_valid')
self.output_valid = None
self.loss_valid = None
self.acc_valid_top1 = None
self.acc_valid_top5 = None
self.ds_valid = None
def __create_network_for_imagenet(self, ph_input, is_training, is_reuse, depth_multiplier=1.0):
tensor_input = tf.divide(ph_input, 255.0, name='inp_divide')
tensor_input = tf.subtract(tensor_input, 0.5, name='inp_subtract')
tensor_input = tf.multiply(tensor_input, 2.0, name='inp_multiply')
with slim.arg_scope(mobilenet_v2_arg_scope(is_training)):
net, end_points = mobilenet_v2_cls(
tensor_input,
is_training=is_training,
reuse=is_reuse,
depth_multiplier=depth_multiplier
)
return net, end_points
def __get_dataflow(self, is_train, batch, datadir):
augmentors = get_augmentations(is_train)
return get_imagenet_dataflow(datadir, 'train' if is_train else 'val', batch, augmentors)
def train(self, datadir=author_dir, batch=128, max_epoch=250, num_gpu=1,
depth_multiplier=1.0, learning_rate_init=0.0001, optimizer='rmsprop',
model_path='/data/private/tf-mobilenet-v2-model/', checkpoint=None):
assert os.path.exists(datadir), 'not exist datadir(%s)' % datadir
assert batch > 0, 'batch should be larger than 0, batch=%d' % batch
assert max_epoch > 0, 'max_epoch should be larger than 0, max_epoch=%d' % max_epoch
assert num_gpu > 0, 'num_gpu should be larger than 0, max_epoch=%d' % num_gpu
assert depth_multiplier > 0, 'depth_multiplier should be larger than 0, depth_multiplier=%d' % depth_multiplier
assert learning_rate_init > 0, 'learning_rate_init should be larger than 0, learning_rate_init=%d' % learning_rate_init
assert batch % num_gpu == 0, 'batch %d should be a multiplier of num_gpu=%d, %d' % (batch, num_gpu, batch % num_gpu)
op_decay_steps = int(round(DATA_PER_EPOCH * self.__op_decay_steps_epoch / batch))
op_decay_rate = 0.99 # TODO
__interval_train_log = int(round(DATA_PER_EPOCH * self.__interval_train_log_epoch / batch))
__interval_valid_log = int(round(DATA_PER_EPOCH * self.__interval_valid_log_epoch / batch))
if self.output_train is None:
# create dataflow & queue
logger.info('creating a mobilenet graph...')
train_dss = [self.__get_dataflow(is_train=True, batch=batch // num_gpu, datadir=datadir) for _ in range(num_gpu)]
phs = [self.ph_train_image, self.ph_train_label]
self.enqueue_threads = [DataFlowToQueue(train_dss[idx], phs, batch // num_gpu, queue_size=100) for idx in range(num_gpu)]
# create optimizer
self.learning_rate = tf.train.exponential_decay(
learning_rate_init, self.global_step,
decay_steps=op_decay_steps,
decay_rate=op_decay_rate,
staircase=True
)
logger.info('optimizer=%s' % optimizer)
if optimizer == 'rmsprop':
self.optimizers = [tf.train.RMSPropOptimizer(self.learning_rate, decay=0.9, momentum=0.9) for _ in range(num_gpu)]
elif optimizer == 'momentum':
self.optimizers = [tf.train.MomentumOptimizer(self.learning_rate, momentum=0.9) for _ in range(num_gpu)]
elif optimizer == 'sgd':
self.optimizers = [tf.train.GradientDescentOptimizer(self.learning_rate) for _ in range(num_gpu)]
elif optimizer == 'adam':
self.optimizers = [tf.train.AdamOptimizer(self.learning_rate) for _ in range(num_gpu)]
else:
raise Exception('invalid optimizer name=%s' % optimizer)
# create network graph for training
logits = []
losses = []
grad_list = []
train_image_batch = []
train_label_batch = []
for gpu_idx in range(num_gpu):
logger.info('creating gpu tower @ %d' % (gpu_idx + 1))
image_tensor, label_tensor = self.enqueue_threads[gpu_idx].dequeue()
train_image_batch.append(image_tensor)
train_label_batch.append(label_tensor)
scope_name = 'tower%d' % gpu_idx
with tf.device(tf.DeviceSpec(device_type="GPU", device_index=gpu_idx)), tf.variable_scope(scope_name):
logit, _ = self.__create_network_for_imagenet(
image_tensor,
is_training=self.is_training,
is_reuse=False,
depth_multiplier=depth_multiplier
)
logits.append(logit)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=label_tensor,
logits=logit
)
losses.append(loss)
loss_w_reg = tf.reduce_sum(loss) + tf.add_n(slim.losses.get_regularization_losses(scope=scope_name))
grad_list.append([x for x in self.optimizers[gpu_idx].compute_gradients(loss_w_reg) if x[0] is not None])
self.output_train = tf.concat(logits, axis=0)
train_image_batch = tf.concat(train_image_batch, axis=0)
train_label_batch = tf.concat(train_label_batch, axis=0)
# loss
self.acc_train_top1 = tf.reduce_mean(
tf.cast(tf.nn.in_top_k(self.output_train, train_label_batch, k=1), dtype=tf.float32)
)
self.acc_train_top5 = tf.reduce_mean(
tf.cast(tf.nn.in_top_k(self.output_train, train_label_batch, k=5), dtype=tf.float32)
)
self.loss_train = tf.reduce_mean(losses)
# use NCCL
grads, all_vars = split_grad_list(grad_list)
reduced_grad = allreduce_grads(grads, average=True)
grads = merge_grad_list(reduced_grad, all_vars)
# optimizer using NCCL
train_ops = []
for idx, grad_and_vars in enumerate(grads):
# apply_gradients may create variables. Make them LOCAL_VARIABLESZ¸¸¸¸¸¸
with tf.name_scope('apply_gradients'), tf.device(tf.DeviceSpec(device_type="GPU", device_index=idx)):
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='tower%d' % idx)
with tf.control_dependencies(update_ops):
train_ops.append(self.optimizers[idx].apply_gradients(grad_and_vars, name='apply_grad_{}'.format(idx)))
self.optimize_op = tf.group(*train_ops, name='train_op')
if self.output_valid is None:
self.__create_validate(depth_multiplier, is_reuse=True)
self.sync_op = get_post_init_ops()
# weight saver : only tower0
# saver = tf.train.Saver(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='tower0') + [self.global_step])
saver = tf.train.Saver()
best_ckpt_saver = BestCheckpointSaver(
save_dir=model_path,
num_to_keep=100,
maximize=False,
saver=saver
)
best_val_loss = 99999
best_val_acc1 = 0
best_val_acc5 = 0
# training
with self.persistent_sess.as_default():
coord = tf.train.Coordinator()
for idx in range(num_gpu):
self.enqueue_threads[idx].set_coordinator(coord)
self.enqueue_threads[idx].start()
q_sizes = [self.enqueue_threads[idx].size() for idx in range(num_gpu)]
self.persistent_sess.run(tf.global_variables_initializer())
if checkpoint is None:
logger.info('initialization - global variable init')
elif checkpoint is 'latest':
logger.info('initialization - restore from latest one')
saver.restore(self.persistent_sess, tf.train.latest_checkpoint(model_path))
else:
logger.info('initialization - restore from model path')
saver.restore(self.persistent_sess, model_path)
self.persistent_sess.run(self.sync_op)
logger.info('start to train... initial step=%d' % (self.persistent_sess.run(self.global_step) + 1))
try:
while True:
_, val_step = self.persistent_sess.run(
[self.optimize_op, self.global_step_add],
feed_dict={
self.is_training: True
}
)
if (val_step + 1) % __interval_train_log == 0:
val_loss, _, _, val_lr, val_acctop1, val_acctop5, val_q_size = self.persistent_sess.run([
self.loss_train, self.optimize_op, self.global_step_add, self.learning_rate,
self.acc_train_top1, self.acc_train_top5, q_sizes[0]
], feed_dict={
self.is_training: True
})
logger.info('training epoch=%.1f/%d step=%d lr=%.6f loss=%.5f acc_top1=%.2f acc_top5=%.2f q=%d'
% (
(val_step + 1) * batch / DATA_PER_EPOCH,
max_epoch,
val_step + 1,
val_lr,
val_loss,
val_acctop1, val_acctop5,
val_q_size
))
if (val_step + 1) % __interval_valid_log == 0:
val_loss, acc_dict = self.validate(datadir, checkpoint=None, depth_multiplier=depth_multiplier)
logger.info('-- validation loss=%.5f acc_top1=%.5f acc_top5=%.5f' % (
val_loss,
acc_dict['top1'],
acc_dict['top5']
))
# save & keep best model \wrt validation loss
best_ckpt_saver.handle(val_loss, self.persistent_sess, self.global_step)
if best_val_loss > val_loss:
best_val_loss = val_loss
best_val_acc1 = acc_dict['top1']
best_val_acc5 = acc_dict['top5']
# periodic synchronization
self.persistent_sess.run(self.sync_op)
if val_step > DATA_PER_EPOCH // batch * max_epoch:
break
assert val_step > 0
except KeyboardInterrupt:
logger.info('interrupted. stop training, saving...')
saver.save(self.persistent_sess, os.path.join(model_path, 'model'), global_step=val_step)
chk_path = get_best_checkpoint(model_path, select_maximum_value=False)
logger.info('training done. best_model val_loss=%.5f top1=%.5f top5=%.5f ckpt=%s' % (
best_val_loss, best_val_acc1, best_val_acc5, chk_path
))
def __create_validate(self, depth_multiplier, is_reuse=False):
# create network graph for validation
logger.info('creating a mobilenet graph for validation... is_reuse=%d' % (is_reuse))
with tf.device(tf.DeviceSpec(device_type="GPU", device_index=0)), tf.variable_scope('tower0'):
self.output_valid, _ = self.__create_network_for_imagenet(
self.ph_valid_image,
is_training=self.is_training,
is_reuse=is_reuse,
depth_multiplier=depth_multiplier
)
# loss
self.loss_valid = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=self.ph_valid_label,
logits=self.output_valid
)
self.acc_valid_top1 = tf.cast(tf.nn.in_top_k(self.output_valid, self.ph_valid_label, k=1), dtype=tf.float32)
self.acc_valid_top5 = tf.cast(tf.nn.in_top_k(self.output_valid, self.ph_valid_label, k=5), dtype=tf.float32)
def validate(self, datadir=author_dir, batch=64, checkpoint=None, depth_multiplier=1.0):
"""
:param datadir:
:param batch:
:param checkpoint: If checkpoint is provided, mobilenet graph will be loaded with the checkpoint. If not,
the graph will reuse the exist weights(eg. training graph)
:return: validation loss, accuracy dict
"""
assert os.path.exists(datadir), 'not exist datadir(%s)' % datadir
assert batch > 0, 'batch should be larger than 0, batch=%d' % batch
assert (self.output_train is not None) if checkpoint is None else True, 'checkpoint is not provided when there are any exist graph.'
if self.output_valid is None:
self.__create_validate(depth_multiplier, (checkpoint is None))
if self.ds_valid is None:
self.ds_valid = self.__get_dataflow(is_train=False, batch=batch, datadir=datadir)
with self.persistent_sess.as_default():
is_reuse = checkpoint is None
logger.debug('validate is_reuse=%d' % is_reuse)
if is_reuse:
# copy from tower0
pass
else:
# TODO : load
pass
val_losses = []
val_acctop1s = []
val_acctop5s = []
for img_batch, lb_batch in self.ds_valid.get_data():
val_loss, val_acctop1, val_acctop5 = self.persistent_sess.run([
self.loss_valid, self.acc_valid_top1, self.acc_valid_top5
], feed_dict={
self.ph_valid_image: img_batch,
self.ph_valid_label: lb_batch,
self.is_training: False
})
# self.persistent_sess.run(self.loss_valid, feed_dict={self.ph_valid_image: img_batch,self.ph_valid_label: lb_batch,self.is_training: False})
# self.persistent_sess.run(self.loss_train,feed_dict={self.ph_train_image: img_batch, self.ph_train_label: lb_batch,self.is_training: False})
val_losses.extend(val_loss)
val_acctop1s.extend(val_acctop1)
val_acctop5s.extend(val_acctop5)
return np.mean(val_losses), {
'top1': np.mean(val_acctop1s),
'top5': np.mean(val_acctop5s)
}
def inference(self, imagepath, checkpoint=None):
pass
if __name__ == '__main__':
fire.Fire(MobilenetRunner)