-
Notifications
You must be signed in to change notification settings - Fork 0
/
labelme_to_coco.py
155 lines (128 loc) · 5.26 KB
/
labelme_to_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# -*- coding:utf-8 -*-
# !/usr/bin/env python
import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image
from shapely.geometry import Polygon
class labelme2coco(object):
def __init__(self,labelme_json=[],save_json_path='./new.json'):
'''
:param labelme_json: all the labelme json files
:param save_json_path: the dir of saved json files
'''
self.labelme_json=labelme_json
self.save_json_path=save_json_path
self.images=[]
self.categories=[]
self.annotations=[]
# self.data_coco = {}
self.label=[]
self.annID=1
self.height=0
self.width=0
self.save_json()
def data_transfer(self):
for num,json_file in enumerate(self.labelme_json):
with open(json_file,'r') as fp:
data = json.load(fp) # load the json files
self.images.append(self.image(data,num))
for shapes in data['shapes']:
full_label=shapes['label']
if full_label.find("spike"):
label = "spike"
if full_label.find("barley"):
label = "barley"
if label not in self.label:
self.categories.append(self.categorie(label))
self.label.append(label)
points=shapes['points']
self.annotations.append(self.annotation(points,label,num))
self.annID+=1
print (num, json_file)
def image(self,data,num):
image={}
img = utils.img_b64_to_arr(data['imageData'])
height, width = img.shape[:2]
img = None
image['height']=height
image['width'] = width
image['id']=num+1
image['file_name'] = data['imagePath'].split('/')[-1]
self.height=height
self.width=width
return image
def categorie(self,label):
categorie={}
categorie['supercategory'] = "wheat"
categorie['id']=len(self.label)+1 # 0 is default as background
categorie['name'] = label
return categorie
def annotation(self,points,label,num):
annotation={}
annotation['segmentation']=[np.asarray(points).flatten().tolist()]
annotation['iscrowd'] = 0
annotation['image_id'] = num+1
annotation['bbox'] = list(map(float,self.getbbox(points)))
annotation['category_id'] = self.getcatid(label)
annotation['id'] = self.annID
# Get the area value
poly = Polygon(points)
annotation['area']=round(poly.area, 6)
return annotation
def getcatid(self,label):
for categorie in self.categories:
if label==categorie['name']:
return categorie['id']
return -1
def getbbox(self,points):
polygons = points
mask = self.polygons_to_mask([self.height,self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
'''从mask反算出其边框
mask:[h,w] 0、1组成的图片
1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
'''
# np.where(mask==1)
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
# 解析左上角行列号
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
# 解析右下角行列号
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
# return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
# return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
# return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
return [left_top_c, left_top_r, right_bottom_c-left_top_c, right_bottom_r-left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式
def polygons_to_mask(self,img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def data2coco(self):
data_coco={}
data_coco['images']=self.images
data_coco['categories']=self.categories
data_coco['annotations']=self.annotations
return data_coco
def save_json(self):
self.data_transfer()
self.data_coco = self.data2coco()
json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4) # indent=4
# convert train data set json files
labelme_json=glob.glob(r'D:\code\agriculture\wheat\dataset\mask rcnn model\2 Labeled data\train_data\json\*.json')
labelme2coco(labelme_json,'./wheat_spike_train.json')
# Convert test data set json files
labelme_json=glob.glob(r'D:\code\agriculture\wheat\dataset\mask rcnn model\2 Labeled data\val_data\json\*.json')
labelme2coco(labelme_json,'./wheat_spike_val.json')