forked from google/pygtrie
-
Notifications
You must be signed in to change notification settings - Fork 8
/
pygtrie.py
1921 lines (1539 loc) · 68.3 KB
/
pygtrie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""Pure Python implementation of a trie data structure.
`Trie data structure <http://en.wikipedia.org/wiki/Trie>`_, also known as radix
or prefix tree, is a tree associating keys to values where all the descendants
of a node have a common prefix (associated with that node).
The trie module contains :class:`pygtrie.Trie`, :class:`pygtrie.CharTrie` and
:class:`pygtrie.StringTrie` classes each implementing a mutable mapping
interface, i.e. :class:`dict` interface. As such, in most circumstances,
:class:`pygtrie.Trie` could be used as a drop-in replacement for
a :class:`dict`, but the prefix nature of the data structure is trie’s real
strength.
The module also contains :class:`pygtrie.PrefixSet` class which uses a trie to
store a set of prefixes such that a key is contained in the set if it or its
prefix is stored in the set.
Features
--------
- A full mutable mapping implementation.
- Supports iterating over as well as deleting of a branch of a trie
(i.e. subtrie)
- Supports prefix checking as well as shortest and longest prefix
look-up.
- Extensible for any kind of user-defined keys.
- A PrefixSet supports “all keys starting with given prefix” logic.
- Can store any value including None.
For a few simple examples see ``example.py`` file.
"""
__author__ = 'Michal Nazarewicz <[email protected]>'
__copyright__ = ('Copyright 2014-2017 Google LLC',
'Copyright 2018-2020 Michal Nazarewicz <[email protected]>')
# __version__ = '' # set by setup.py sdist or build
import copy as _copy
import collections.abc as _abc
class ShortKeyError(KeyError):
"""Raised when given key is a prefix of an existing longer key
but does not have a value associated with itself."""
class _NoChildren:
"""Collection representing lack of any children.
Also acts as an empty iterable and an empty iterator. This isn’t the
cleanest designs but it makes various things more concise and avoids object
allocations in a few places.
Don’t create objects of this type directly; instead use _EMPTY singleton.
"""
__slots__ = ()
def __bool__(self):
return False
def __len__(self):
return 0
def __iter__(self):
return self
def __next__(self):
raise StopIteration()
items = sorted_items = __iter__
def get(self, _step):
return None
def add(self, parent, step):
node = _Node()
parent.children = _OneChild(step, node)
return node
require = add
def copy(self, _make_copy, _queue):
return self
def __deepcopy__(self, memo):
return self
# pick and delete aren’t implemented on purpose since it should never be
# called on a node with no children.
_EMPTY = _NoChildren()
class _OneChild:
"""Children collection representing a single child."""
__slots__ = ('step', 'node')
def __init__(self, step, node):
self.step = step
self.node = node
def __bool__(self):
return True
def __len__(self):
return 1
def items(self):
return ((self.step, self.node),)
sorted_items = items
def pick(self):
return (self.step, self.node)
def get(self, step):
return self.node if step == self.step else None
def add(self, parent, step):
node = _Node()
parent.children = _Children((self.step, self.node), (step, node))
return node
def require(self, parent, step):
return self.node if self.step == step else self.add(parent, step)
def merge(self, other, queue):
"""Moves children from other into this object."""
if type(other) == _OneChild and other.step == self.step:
queue.append((self.node, other.node))
return self
else:
children = _Children((self.step, self.node))
children.merge(other, queue)
return children
def delete(self, parent, _step):
parent.children = _EMPTY
def copy(self, make_copy, queue):
cpy = _OneChild(make_copy(self.step), self.node.shallow_copy(make_copy))
queue.append((cpy.node,))
return cpy
class _Children(dict):
"""Children collection representing more than one child."""
__slots__ = ()
def __init__(self, *items):
super().__init__(items)
def sorted_items(self):
return sorted(self.items())
def pick(self):
return next(iter(self.items()))
def add(self, _parent, step):
self[step] = node = _Node()
return node
def require(self, _parent, step):
return self.setdefault(step, _Node())
def merge(self, other, queue):
"""Moves children from other into this object."""
for step, other_node in other.items():
node = self.setdefault(step, other_node)
if node is not other_node:
queue.append((node, other_node))
return self
def delete(self, parent, step):
del self[step]
if len(self) == 1:
parent.children = _OneChild(*self.popitem())
def copy(self, make_copy, queue):
cpy = _Children()
cpy.update((make_copy(step), node.shallow_copy(make_copy))
for step, node in self.items())
queue.append(cpy.values())
return cpy
class _Node:
"""A single node of a trie.
Stores value associated with the node and dictionary of children.
"""
__slots__ = ('children', 'value')
def __init__(self):
self.children = _EMPTY
self.value = _EMPTY
def merge(self, other, overwrite):
"""Move children from other node into this one.
Args:
other: Other node to move children and value from.
overwrite: Whether to overwrite existing node values.
"""
queue = [(self, other)]
while queue:
lhs, rhs = queue.pop()
if lhs.value is _EMPTY or (overwrite and rhs.value is not _EMPTY):
lhs.value = rhs.value
if lhs.children is _EMPTY:
lhs.children = rhs.children
elif rhs.children is not _EMPTY:
lhs.children = lhs.children.merge(rhs.children, queue)
rhs.children = _EMPTY
def iterate(self, path, shallow, items):
"""Yields all the nodes with values associated to them in the trie.
Args:
path: Path leading to this node. Used to construct the key when
returning value of this node and as a prefix for children.
shallow: Perform a shallow traversal, i.e. do not yield nodes if
their prefix has been yielded.
items: A callable which takes ``node.children`` as a sole argument
and returns an iterable of children as ``(step, node)`` pairs.
It would typically call ``items`` or ``sorted_items`` method on
the argument depending on whether sorted output is desired.
Yields:
``(path, value)`` tuples.
"""
# Use iterative function with stack on the heap so we don't hit Python's
# recursion depth limits.
node = self
stack = []
while True:
if node.value is not _EMPTY:
yield path, node.value
if (not shallow or node.value is _EMPTY) and node.children:
stack.append(iter(items(node.children)))
path.append(None)
while True:
try:
step, node = next(stack[-1])
path[-1] = step
break
except StopIteration:
stack.pop()
path.pop()
except IndexError:
return
def traverse(self, node_factory, path_conv, path, items):
"""Traverses the node and returns another type of node from factory.
Args:
node_factory: Callable to construct return value.
path_conv: Callable to convert node path to a key.
path: Current path for this node.
items: A callable which takes ``node.children`` as a sole argument
and returns an iterable of children as ``(step, node)`` pairs.
It would typically call ``items`` or ``sorted_items`` method on
the argument depending on whether sorted output is desired.
Returns:
An object constructed by calling node_factory(path_conv, path,
children, value=...), where children are constructed by node_factory
from the children of this node. There doesn't need to be 1:1
correspondence between original nodes in the trie and constructed
nodes (see make_test_node_and_compress in test.py).
"""
children = self.children and (
node.traverse(node_factory, path_conv, path + [step], items)
for step, node in items(self.children))
value_maybe = ()
if self.value is not _EMPTY:
value_maybe = (self.value,)
return node_factory(path_conv, tuple(path), children, *value_maybe)
def equals(self, other):
"""Returns whether this and other node are recursively equal."""
# Like iterate, we don't recurse so this works on deep tries.
a, b = self, other
stack = []
while True:
if a.value != b.value or len(a.children) != len(b.children):
return False
if len(a.children) == 1:
# We know a.children and b.children are both _OneChild objects
# but pylint doesn’t recognise that: pylint: disable=no-member
if a.children.step != b.children.step:
return False
a = a.children.node
b = b.children.node
continue
if a.children:
stack.append((iter(a.children.items()), b.children))
while True:
try:
key, a = next(stack[-1][0])
b = stack[-1][1][key]
break
except StopIteration:
stack.pop()
except IndexError:
return True
except KeyError:
return False
__bool__ = __hash__ = None
def shallow_copy(self, make_copy):
"""Returns a copy of the node which shares the children property."""
cpy = _Node()
cpy.children = self.children
cpy.value = make_copy(self.value)
return cpy
def copy(self, make_copy):
"""Returns a copy of the node structure."""
cpy = self.shallow_copy(make_copy)
queue = [(cpy,)]
while queue:
for node in queue.pop():
node.children = node.children.copy(make_copy, queue)
return cpy
def __getstate__(self):
"""Get state used for pickling.
The state is encoded as a list of simple commands which consist of an
integer and some command-dependent number of arguments. The commands
modify what the current node is by navigating the trie up and down and
setting node values. Possible commands are:
* [n, step0, step1, ..., stepn-1, value], for n >= 0, specifies step
needed to reach the next current node as well as its new value. There
is no way to create a child node without setting its (or its
descendant's) value.
* [-n], for -n < 0, specifies to go up n steps in the trie.
When encoded as a state, the commands are flattened into a single list.
For example::
[ 0, 'Root',
2, 'Foo', 'Bar', 'Root/Foo/Bar Node',
-1,
1, 'Baz', 'Root/Foo/Baz Node',
-2,
1, 'Qux', 'Root/Qux Node' ]
Creates the following hierarchy::
-* value: Root
+-- Foo --* no value
| +-- Bar -- * value: Root/Foo/Bar Node
| +-- Baz -- * value: Root/Foo/Baz Node
+-- Qux -- * value: Root/Qux Node
Returns:
A pickable state which can be passed to :func:`_Node.__setstate__`
to reconstruct the node and its full hierarchy.
"""
# Like iterate, we don't recurse so pickling works on deep tries.
state = [] if self.value is _EMPTY else [0]
last_cmd = 0
node = self
stack = []
while True:
if node.value is not _EMPTY:
last_cmd = 0
state.append(node.value)
stack.append(iter(node.children.items()))
while True:
step, node = next(stack[-1], (None, None))
if node is not None:
break
if last_cmd < 0:
state[-1] -= 1
else:
last_cmd = -1
state.append(-1)
stack.pop()
if not stack:
state.pop() # Final -n command is not necessary
return state
if last_cmd > 0:
last_cmd += 1
state[-last_cmd] += 1
else:
last_cmd = 1
state.append(1)
state.append(step)
def __setstate__(self, state):
"""Unpickles node. See :func:`_Node.__getstate__`."""
self.__init__()
state = iter(state)
stack = [self]
for cmd in state:
if cmd < 0:
del stack[cmd:]
else:
while cmd > 0:
parent = stack[-1]
stack.append(parent.children.add(parent, next(state)))
cmd -= 1
stack[-1].value = next(state)
class Trie(_abc.MutableMapping):
"""A trie implementation with dict interface plus some extensions.
Keys used with the :class:`pygtrie.Trie` class must be iterable which each
component being a hashable objects. In other words, for a given key,
``dict.fromkeys(key)`` must be valid expression.
In particular, strings work well as trie keys, however when getting them
back (for example via :func:`Trie.iterkeys` method), instead of strings,
tuples of characters are produced. For that reason,
:class:`pygtrie.CharTrie` or :class:`pygtrie.StringTrie` classes may be
preferred when using string keys.
"""
def __init__(self, *args, **kwargs):
"""Initialises the trie.
Arguments are interpreted the same way :func:`Trie.update` interprets
them.
"""
self._root = _Node()
self._items_callback = self._ITEMS_CALLBACKS[0]
self.update(*args, **kwargs)
_ITEMS_CALLBACKS = (lambda x: x.items(), lambda x: x.sorted_items())
def enable_sorting(self, enable=True):
"""Enables sorting of child nodes when iterating and traversing.
Normally, child nodes are not sorted when iterating or traversing over
the trie (just like dict elements are not sorted). This method allows
sorting to be enabled (which was the behaviour prior to pygtrie 2.0
release).
For Trie class, enabling sorting of children is identical to simply
sorting the list of items since Trie returns keys as tuples. However,
for other implementations such as StringTrie the two may behave subtly
different. For example, sorting items might produce::
root/foo-bar
root/foo/baz
even though foo comes before foo-bar.
Args:
enable: Whether to enable sorting of child nodes.
"""
self._items_callback = self._ITEMS_CALLBACKS[bool(enable)]
def __getstate__(self):
# encode self._items_callback as self._sorted when pickling
state = self.__dict__.copy()
callback = state.pop('_items_callback', None)
state['_sorted'] = callback is self._ITEMS_CALLBACKS[1]
return state
def __setstate__(self, state):
# translate self._sorted back to _items_callback when unpickling
self.__dict__ = state
self.enable_sorting(state.pop('_sorted'))
def clear(self):
"""Removes all the values from the trie."""
self._root = _Node()
def update(self, *args, **kwargs): # pylint: disable=arguments-differ
"""Updates stored values. Works like :meth:`dict.update`."""
if len(args) > 1:
raise ValueError('update() takes at most one positional argument, '
'%d given.' % len(args))
# We have this here instead of just letting MutableMapping.update()
# handle things because it will iterate over keys and for each key
# retrieve the value. With Trie, this may be expensive since the path
# to the node would have to be walked twice. Instead, we have our own
# implementation where iteritems() is used avoiding the unnecessary
# value look-up.
if args and isinstance(args[0], Trie):
for key, value in args[0].items():
self[key] = value
args = ()
super().update(*args, **kwargs)
def merge(self, other, overwrite=False):
"""Moves nodes from other trie into this one.
The merging happens at trie structure level and as such is different
than iterating over items of one trie and setting them in the other
trie.
The merging may happen between different types of tries resulting in
different (key, value) pairs in the destination trie compared to the
source. For example, merging two :class:`pygtrie.StringTrie` objects
each using different separators will work as if the other trie had
separator of this trie. Similarly, a :class:`pygtrie.CharTrie` may be
merged into a :class:`pygtrie.StringTrie` but when keys are read those
will be joined by the separator. For example:
>>> import pygtrie
>>> st = pygtrie.StringTrie(separator='.')
>>> st.merge(pygtrie.StringTrie({'foo/bar': 42}))
>>> list(st.items())
[('foo.bar', 42)]
>>> st.merge(pygtrie.CharTrie({'baz': 24}))
>>> sorted(st.items())
[('b.a.z', 24), ('foo.bar', 42)]
Not all tries can be merged into other tries. For example,
a :class:`pygtrie.StringTrie` may not be merged into
a :class:`pygtrie.CharTrie` because the latter imposes a requirement for
each component in the key to be exactly one character while in the
former components may be arbitrary length.
Note that the other trie is cleared and any references or iterators over
it are invalidated. To preserve other’s value it needs to be copied
first.
Args:
other: Other trie to move nodes from.
overwrite: Whether to overwrite existing values in this trie.
"""
if isinstance(self, type(other)):
self._merge_impl(self, other, overwrite=overwrite)
else:
other._merge_impl(self, other, overwrite=overwrite) # pylint: disable=protected-access
other.clear()
@classmethod
def _merge_impl(cls, dst, src, overwrite):
# pylint: disable=protected-access
dst._root.merge(src._root, overwrite=overwrite)
def copy(self, __make_copy=lambda x: x):
"""Returns a shallow copy of the object."""
# pylint: disable=protected-access
cpy = self.__class__()
cpy.__dict__ = self.__dict__.copy()
cpy._root = self._root.copy(__make_copy)
return cpy
def __copy__(self):
return self.copy()
def __deepcopy__(self, memo):
return self.copy(lambda x: _copy.deepcopy(x, memo))
@classmethod
def fromkeys(cls, keys, value=None):
"""Creates a new trie with given keys set.
This is roughly equivalent to calling the constructor with a ``(key,
value) for key in keys`` generator.
Args:
keys: An iterable of keys that should be set in the new trie.
value: Value to associate with given keys.
Returns:
A new trie where each key from ``keys`` has been set to the given
value.
"""
trie = cls()
for key in keys:
trie[key] = value
return trie
def _get_node(self, key):
"""Returns node for given key. Creates it if requested.
Args:
key: A key to look for.
Returns:
``(node, trace)`` tuple where ``node`` is the node for given key and
``trace`` is a list specifying path to reach the node including all
the encountered nodes. Each element of trace is a ``(step, node)``
tuple where ``step`` is a step from parent node to given node and
``node`` is node on the path. The first element of the path is
always ``(None, self._root)``.
Raises:
KeyError: If there is no node for the key.
"""
node = self._root
trace = [(None, node)]
for step in self.__path_from_key(key):
# pylint thinks node.children is always _NoChildren and thus that
# we’re assigning None here; pylint: disable=assignment-from-none
node = node.children.get(step)
if node is None:
raise KeyError(key)
trace.append((step, node))
return node, trace
def _set_node(self, key, value, only_if_missing=False):
"""Sets value for a given key.
Args:
key: Key to set value of.
value: Value to set to.
only_if_missing: If true, value won't be changed if the key is
already associated with a value.
Returns:
The node.
"""
node = self._root
for step in self.__path_from_key(key):
node = node.children.require(node, step)
if node.value is _EMPTY or not only_if_missing:
node.value = value
return node
def _set_node_if_no_prefix(self, key):
"""Sets given key to True but only if none of its prefixes are present.
If value is set, removes all ancestors of the node.
This is a method for exclusive use by PrefixSet.
Args:
key: Key to set value of.
"""
steps = iter(self.__path_from_key(key))
node = self._root
try:
while node.value is _EMPTY:
node = node.children.require(node, next(steps))
except StopIteration:
node.value = True
node.children = _EMPTY
def __iter__(self):
return self.iterkeys()
# pylint: disable=arguments-differ
def iteritems(self, prefix=_EMPTY, shallow=False):
"""Yields all nodes with associated values with given prefix.
Only nodes with values are output. For example::
>>> import pygtrie
>>> t = pygtrie.StringTrie()
>>> t['foo'] = 'Foo'
>>> t['foo/bar/baz'] = 'Baz'
>>> t['qux'] = 'Qux'
>>> sorted(t.items())
[('foo', 'Foo'), ('foo/bar/baz', 'Baz'), ('qux', 'Qux')]
Items are generated in topological order (i.e. parents before child
nodes) but the order of siblings is unspecified. At an expense of
efficiency, :func:`Trie.enable_sorting` method can turn deterministic
ordering of siblings.
With ``prefix`` argument, only items with specified prefix are generated
(i.e. only given subtrie is traversed) as demonstrated by::
>>> t.items(prefix='foo')
[('foo', 'Foo'), ('foo/bar/baz', 'Baz')]
With ``shallow`` argument, if a node has value associated with it, it's
children are not traversed even if they exist which can be seen in::
>>> sorted(t.items(shallow=True))
[('foo', 'Foo'), ('qux', 'Qux')]
Args:
prefix: Prefix to limit iteration to.
shallow: Perform a shallow traversal, i.e. do not yield items if
their prefix has been yielded.
Yields:
``(key, value)`` tuples.
Raises:
KeyError: If ``prefix`` does not match any node.
"""
node, _ = self._get_node(prefix)
for path, value in node.iterate(list(self.__path_from_key(prefix)),
shallow, self._items_callback):
yield (self._key_from_path(path), value)
def iterkeys(self, prefix=_EMPTY, shallow=False):
"""Yields all keys having associated values with given prefix.
This is equivalent to taking first element of tuples generated by
:func:`Trie.iteritems` which see for more detailed documentation.
Args:
prefix: Prefix to limit iteration to.
shallow: Perform a shallow traversal, i.e. do not yield keys if
their prefix has been yielded.
Yields:
All the keys (with given prefix) with associated values in the trie.
Raises:
KeyError: If ``prefix`` does not match any node.
"""
for key, _ in self.iteritems(prefix=prefix, shallow=shallow):
yield key
def itervalues(self, prefix=_EMPTY, shallow=False):
"""Yields all values associated with keys with given prefix.
This is equivalent to taking second element of tuples generated by
:func:`Trie.iteritems` which see for more detailed documentation.
Args:
prefix: Prefix to limit iteration to.
shallow: Perform a shallow traversal, i.e. do not yield values if
their prefix has been yielded.
Yields:
All the values associated with keys (with given prefix) in the trie.
Raises:
KeyError: If ``prefix`` does not match any node.
"""
node, _ = self._get_node(prefix)
for _, value in node.iterate(list(self.__path_from_key(prefix)),
shallow, self._items_callback):
yield value
def items(self, prefix=_EMPTY, shallow=False):
"""Returns a list of ``(key, value)`` pairs in given subtrie.
This is equivalent to constructing a list from generator returned by
:func:`Trie.iteritems` which see for more detailed documentation.
"""
return list(self.iteritems(prefix=prefix, shallow=shallow))
def keys(self, prefix=_EMPTY, shallow=False):
"""Returns a list of all the keys, with given prefix, in the trie.
This is equivalent to constructing a list from generator returned by
:func:`Trie.iterkeys` which see for more detailed documentation.
"""
return list(self.iterkeys(prefix=prefix, shallow=shallow))
def values(self, prefix=_EMPTY, shallow=False):
"""Returns a list of values in given subtrie.
This is equivalent to constructing a list from generator returned by
:func:`Trie.itervalues` which see for more detailed documentation.
"""
return list(self.itervalues(prefix=prefix, shallow=shallow))
def __len__(self):
"""Returns number of values in a trie.
Note that this method is expensive as it iterates over the whole trie.
"""
return sum(1 for _ in self.itervalues())
def __bool__(self):
return self._root.value is not _EMPTY or bool(self._root.children)
__hash__ = None
HAS_VALUE = 1
HAS_SUBTRIE = 2
def has_node(self, key):
"""Returns whether given node is in the trie.
Return value is a bitwise or of ``HAS_VALUE`` and ``HAS_SUBTRIE``
constants indicating node has a value associated with it and that it is
a prefix of another existing key respectively. Both of those are
independent of each other and all of the four combinations are possible.
For example::
>>> import pygtrie
>>> t = pygtrie.StringTrie()
>>> t['foo/bar'] = 'Bar'
>>> t['foo/bar/baz'] = 'Baz'
>>> t.has_node('qux') == 0
True
>>> t.has_node('foo/bar/baz') == pygtrie.Trie.HAS_VALUE
True
>>> t.has_node('foo') == pygtrie.Trie.HAS_SUBTRIE
True
>>> t.has_node('foo/bar') == (pygtrie.Trie.HAS_VALUE |
... pygtrie.Trie.HAS_SUBTRIE)
True
There are two higher level methods built on top of this one which give
easier interface for the information. :func:`Trie.has_key` returns
whether node has a value associated with it and :func:`Trie.has_subtrie`
checks whether node is a prefix. Continuing previous example::
>>> t.has_key('qux'), t.has_subtrie('qux')
(False, False)
>>> t.has_key('foo/bar/baz'), t.has_subtrie('foo/bar/baz')
(True, False)
>>> t.has_key('foo'), t.has_subtrie('foo')
(False, True)
>>> t.has_key('foo/bar'), t.has_subtrie('foo/bar')
(True, True)
Args:
key: A key to look for.
Returns:
Non-zero if node exists and if it does a bit-field denoting whether
it has a value associated with it and whether it has a subtrie.
"""
try:
node, _ = self._get_node(key)
except KeyError:
return 0
return ((self.HAS_VALUE * (node.value is not _EMPTY)) |
(self.HAS_SUBTRIE * bool(node.children)))
def has_key(self, key):
"""Indicates whether given key has value associated with it.
See :func:`Trie.has_node` for more detailed documentation.
"""
return bool(self.has_node(key) & self.HAS_VALUE)
def has_subtrie(self, key):
"""Returns whether given key is a prefix of another key in the trie.
See :func:`Trie.has_node` for more detailed documentation.
"""
return bool(self.has_node(key) & self.HAS_SUBTRIE)
@staticmethod
def _slice_maybe(key_or_slice):
"""Checks whether argument is a slice or a plain key.
Args:
key_or_slice: A key or a slice to test.
Returns:
``(key, is_slice)`` tuple. ``is_slice`` indicates whether
``key_or_slice`` is a slice and ``key`` is either ``key_or_slice``
itself (if it's not a slice) or slice's start position.
Raises:
TypeError: If ``key_or_slice`` is a slice whose stop or step are not
``None`` In other words, only ``[key:]`` slices are valid.
"""
if isinstance(key_or_slice, slice):
if key_or_slice.stop is not None or key_or_slice.step is not None:
raise TypeError(key_or_slice)
return key_or_slice.start, True
return key_or_slice, False
def __getitem__(self, key_or_slice):
"""Returns value associated with given key or raises KeyError.
When argument is a single key, value for that key is returned (or
:class:`KeyError` exception is thrown if the node does not exist or has
no value associated with it).
When argument is a slice, it must be one with only `start` set in which
case the access is identical to :func:`Trie.itervalues` invocation with
prefix argument.
Example:
>>> import pygtrie
>>> t = pygtrie.StringTrie()
>>> t['foo/bar'] = 'Bar'
>>> t['foo/baz'] = 'Baz'
>>> t['qux'] = 'Qux'
>>> t['foo/bar']
'Bar'
>>> sorted(t['foo':])
['Bar', 'Baz']
>>> t['foo'] # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ShortKeyError: 'foo'
Args:
key_or_slice: A key or a slice to look for.
Returns:
If a single key is passed, a value associated with given key. If
a slice is passed, a generator of values in specified subtrie.
Raises:
ShortKeyError: If the key has no value associated with it but is
a prefix of some key with a value. Note that
:class:`ShortKeyError` is subclass of :class:`KeyError`.
KeyError: If key has no value associated with it nor is a prefix of
an existing key.
TypeError: If ``key_or_slice`` is a slice but it's stop or step are
not ``None``.
"""
if self._slice_maybe(key_or_slice)[1]:
return self.itervalues(key_or_slice.start)
node, _ = self._get_node(key_or_slice)
if node.value is _EMPTY:
raise ShortKeyError(key_or_slice)
return node.value
def __setitem__(self, key_or_slice, value):
"""Sets value associated with given key.
If `key_or_slice` is a key, simply associate it with given value. If it
is a slice (which must have `start` set only), it in addition clears any
subtrie that might have been attached to particular key. For example::
>>> import pygtrie
>>> t = pygtrie.StringTrie()
>>> t['foo/bar'] = 'Bar'
>>> t['foo/baz'] = 'Baz'
>>> sorted(t.keys())
['foo/bar', 'foo/baz']
>>> t['foo':] = 'Foo'
>>> t.keys()
['foo']
Args:
key_or_slice: A key to look for or a slice. If it is a slice, the
whole subtrie (if present) will be replaced by a single node
with given value set.
value: Value to set.
Raises:
TypeError: If key is a slice whose stop or step are not None.
"""
key, is_slice = self._slice_maybe(key_or_slice)
node = self._set_node(key, value)
if is_slice:
node.children = _EMPTY
def setdefault(self, key, default=None):
"""Sets value of a given node if not set already. Also returns it.
In contrast to :func:`Trie.__setitem__`, this method does not accept
slice as a key.
"""
return self._set_node(key, default, only_if_missing=True).value
@staticmethod
def _pop_value(trace):
"""Removes value from given node and removes any empty nodes.
Args:
trace: Trace to the node to cleanup as returned by
:func:`Trie._get_node`. The last element of the trace denotes
the node to get value of.
Returns:
Value which was held in the node at the end of specified trace.
This may be _EMPTY if the node didn’t have a value in the first
place.
"""
i = len(trace) - 1 # len(path) >= 1 since root is always there
step, node = trace[i]
value, node.value = node.value, _EMPTY
while i and node.value is _EMPTY and not node.children:
i -= 1
parent_step, parent = trace[i]
parent.children.delete(parent, step)
step, node = parent_step, parent
return value
def pop(self, key, default=_EMPTY):
"""Deletes value associated with given key and returns it.
Args:
key: A key to look for.
default: If specified, value that will be returned if given key has
no value associated with it. If not specified, method will
throw KeyError in such cases.
Returns:
Removed value, if key had value associated with it, or ``default``
(if given).