This repository has been archived by the owner on Sep 1, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 27
/
hello_milvus.py
88 lines (71 loc) · 2.73 KB
/
hello_milvus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright (C) 2019-2020 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License
# is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
# or implied. See the License for the specific language governing permissions and limitations under the License.
import random
from pymilvus_orm import (
connections, FieldSchema, CollectionSchema, DataType,
Collection, list_collections,
)
def hello_milvus():
# create connection
connections.connect()
print(f"\nList collections...")
print(list_collections())
# create collection
dim = 128
default_fields = [
FieldSchema(name="count", dtype=DataType.INT64, is_primary=True),
FieldSchema(name="random_value", dtype=DataType.DOUBLE),
FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
default_schema = CollectionSchema(fields=default_fields, description="test collection")
print(f"\nCreate collection...")
collection = Collection(name="hello_milvus", schema=default_schema)
print(f"\nList collections...")
print(list_collections())
# insert data
nb = 3000
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
collection.insert(
[
[i for i in range(nb)],
[float(random.randrange(-20, -10)) for _ in range(nb)],
vectors
]
)
print(f"\nGet collection entities...")
print(collection.num_entities)
# create index and load table
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
print(f"\nCreate index...")
collection.create_index(field_name="float_vector", index_params=default_index)
print(f"\nload collection...")
collection.load()
# load and search
topK = 5
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
import time
start_time = time.time()
print(f"\nSearch...")
# define output_fields of search result
res = collection.search(
vectors[-2:], "float_vector", search_params, topK,
"count > 100", output_fields=["count", "random_value"]
)
end_time = time.time()
# show result
for hits in res:
for hit in hits:
# Get value of the random value field for search result
print(hit, hit.entity.get("random_value"))
print("search latency = %.4fs" % (end_time - start_time))
# drop collection
collection.drop()
hello_milvus()