From cb91774355f4fe9ed7583b16eebf268dc83d9afa Mon Sep 17 00:00:00 2001 From: PahudPlus Date: Mon, 13 Jul 2020 19:35:32 +0800 Subject: [PATCH] Changed what_is_milvus.md back to overview.md --- site/en/about_milvus/overview.md | 22 +++++++--- site/en/about_milvus/what_is_milvus.md | 26 ------------ site/en/menuStructure/en.json | 2 +- site/zh-CN/about_milvus/overview.md | 51 +++++++++-------------- site/zh-CN/about_milvus/what_is_milvus.md | 33 --------------- site/zh-CN/menuStructure/cn.json | 2 +- 6 files changed, 38 insertions(+), 98 deletions(-) delete mode 100644 site/en/about_milvus/what_is_milvus.md delete mode 100644 site/zh-CN/about_milvus/what_is_milvus.md diff --git a/site/en/about_milvus/overview.md b/site/en/about_milvus/overview.md index bb69e8d3a..e149751a0 100644 --- a/site/en/about_milvus/overview.md +++ b/site/en/about_milvus/overview.md @@ -1,14 +1,26 @@ --- -id: overview.md +id: what_is_milvus.md --- -# Milvus Overview +# What is Milvus +As an open source vector similarity search engine, Milvus is easy-to-use, highly reliable, scalable, robust, and blazing fast. It integrates vector index libraries such as Faiss, NMSLIB, and Annoy, hides their complexity, and provides simple and consistent APIs. Milvus offers efficient means of managing vector data, including adding, deleting, and modifying vector and non-vector data. Aside from near real-time search for vectors, Milvus also supports filtering scalar data. With the increase of data and query scale, Milvus also provides a solution for cluster sharding, which supports functions such as read/write separation, horizontal scalability, and dynamic scalability, to cope with large data volume. These capabilities facilitate the extensive use of Milvus in hundreds of organizations and institutions worldwide in the following scenarios: +- Image, video, and audio search +- Text search, recommender system, interactive question answering system, and other text search fields +- Drug discovery, genetic screening, and other biomedical fields +In addition to core functions such as data management and vector search, Milvus also provides -## What's next +- JSON-based DSL that contains flexible and convenient search methods, +- SDK and RESTful APIs based on Python / Java / Go / C++, +- monitoring and alarm system based on Prometheus, +- deployment methods based on Docker and Kubernetes. -- Explore more concepts of [vectors](vector.md), [vector search](index_method.md) and [vector database](vector_db.md) -- [Install Milvus](install_milvus.md) and start to explore around +The above features have greatly enhanced the ease of use of Milvus. +Milvus is a user-friendly product out of the box because all configuration parameters have default values. With the growing understanding of Milvus, you will find that Milvus is flexible and configurable in its entirety. You can explore the advanced features of Milvus to optimize the storage and search of vectors to better serve your business. + +Milvus was released under the Apache 2.0 License and officially open sourced in October 2019. It is an incubation project of the [LF AI](https://lfai.foundation/) Foundation. The source code of Milvus is hosted on GitHub: [Milvus · An Open Source Vector Similarity Search Engine](https://github.com/milvus-io/milvus). If you want to join our developer community, welcome to visit: [Contribute to Milvus](https://github.com/milvus-io/milvus/blob/master/CONTRIBUTING.md#contributing-to-milvus). + +If you have any questions about the functions or SDK of Milvus, you are welcomed to join [Slack](https://join.slack.com/t/milvusio/shared_invite/zt-e0u4qu3k-bI2GDNys3ZqX1YCJ9OM~GQ) and talk with us. \ No newline at end of file diff --git a/site/en/about_milvus/what_is_milvus.md b/site/en/about_milvus/what_is_milvus.md deleted file mode 100644 index e149751a0..000000000 --- a/site/en/about_milvus/what_is_milvus.md +++ /dev/null @@ -1,26 +0,0 @@ ---- -id: what_is_milvus.md ---- - -# What is Milvus - -As an open source vector similarity search engine, Milvus is easy-to-use, highly reliable, scalable, robust, and blazing fast. It integrates vector index libraries such as Faiss, NMSLIB, and Annoy, hides their complexity, and provides simple and consistent APIs. Milvus offers efficient means of managing vector data, including adding, deleting, and modifying vector and non-vector data. Aside from near real-time search for vectors, Milvus also supports filtering scalar data. With the increase of data and query scale, Milvus also provides a solution for cluster sharding, which supports functions such as read/write separation, horizontal scalability, and dynamic scalability, to cope with large data volume. These capabilities facilitate the extensive use of Milvus in hundreds of organizations and institutions worldwide in the following scenarios: - -- Image, video, and audio search -- Text search, recommender system, interactive question answering system, and other text search fields -- Drug discovery, genetic screening, and other biomedical fields - -In addition to core functions such as data management and vector search, Milvus also provides - -- JSON-based DSL that contains flexible and convenient search methods, -- SDK and RESTful APIs based on Python / Java / Go / C++, -- monitoring and alarm system based on Prometheus, -- deployment methods based on Docker and Kubernetes. - -The above features have greatly enhanced the ease of use of Milvus. - -Milvus is a user-friendly product out of the box because all configuration parameters have default values. With the growing understanding of Milvus, you will find that Milvus is flexible and configurable in its entirety. You can explore the advanced features of Milvus to optimize the storage and search of vectors to better serve your business. - -Milvus was released under the Apache 2.0 License and officially open sourced in October 2019. It is an incubation project of the [LF AI](https://lfai.foundation/) Foundation. The source code of Milvus is hosted on GitHub: [Milvus · An Open Source Vector Similarity Search Engine](https://github.com/milvus-io/milvus). If you want to join our developer community, welcome to visit: [Contribute to Milvus](https://github.com/milvus-io/milvus/blob/master/CONTRIBUTING.md#contributing-to-milvus). - -If you have any questions about the functions or SDK of Milvus, you are welcomed to join [Slack](https://join.slack.com/t/milvusio/shared_invite/zt-e0u4qu3k-bI2GDNys3ZqX1YCJ9OM~GQ) and talk with us. \ No newline at end of file diff --git a/site/en/menuStructure/en.json b/site/en/menuStructure/en.json index a9aa52d33..15d116122 100644 --- a/site/en/menuStructure/en.json +++ b/site/en/menuStructure/en.json @@ -10,7 +10,7 @@ "isMenu": true }, { - "id": "what_is_milvus.md", + "id": "overview.md", "title": "What is Milvus", "label1": "about_milvus", "label2": "", diff --git a/site/zh-CN/about_milvus/overview.md b/site/zh-CN/about_milvus/overview.md index 8f3dfcda5..9542760f9 100644 --- a/site/zh-CN/about_milvus/overview.md +++ b/site/zh-CN/about_milvus/overview.md @@ -1,46 +1,33 @@ --- -id: overview.md +id: what_is_milvus.md --- -# Milvus 简介 +# Milvus 是什么 +Milvus 是一款开源向量相似度搜索引擎,建立在 Faiss、NMSLIB、Annoy 等向量索引库基础之上,具有功能强大、稳定可靠以及易于使用等特点。Milvus 集成了这些向量索引库,隐藏了他们的复杂性,提供了一套简单而一致的 API。此外,Milvus 能够有效的管理向量数据,提供针对向量和非向量数据的增删改查的能力。除了提供针对向量的近实时搜索能力外,Milvus 可以对标量数据进行过滤。随着数据和查询规模的增加,Milvus 还提供了集群分片的解决方案,支持读写分离、水平扩展、动态扩容等功能,实现了对于超大数据规模的支持。目前,Milvus 是一个单节点主从式架构(Client-server model)的服务器,最高可以支持 TB 级特征数据的存储和搜索服务。对于有更大数据规模或者高并发需求的用户,可以使用目前尚在实验阶段的集群分片中间件 Mishards 进行部署。 +在服务端,Milvus 由两部分组成:Milvus server 和 Meta store。 +* Milvus server 提供了 Milvus 的主要功能,包括数据的存储与管理、数据的搜索等。 +* Meta store 则存储了 Milvus 的元数据。目前 Milvus 支持的元数据库可以是 MySQL 和 SQLite。 +这些能力使得 Milvus 可以广泛地应用于以下场景: -## 术语 +- 图像、视频、音频等音视频搜索领域 +- 文本搜索、推荐和交互式问答系统等文本搜索领域 +- 新药搜索、基因筛选等生物医药领域 -- 实体(Entity): 代表一个实际对象,由字段组成。 +除了提供核心的数据管理和搜索功能外,Milvus 还提供了 -- 字段(Field):用于表示对象的某个属性。字段可以是结构化数据,也可以是向量。 +- 基于 JSON 的 DSL,提供用户灵活方便的搜索方式 +- 基于 Python / Java / Go / C++ 的 SDK 和 RESTful API +- 对接基于 Prometheus 的监控与告警系统 +- 基于 Docker和 Kubernetes 的部署方式 -- 实体标识(Entity ID): 是用于唯一指代一个实体的 64 位非负整数。创建实体时,该标识可以由用户指定,也可以由 Milvus 自动生成。 +以上功能都极大地增强了 Milvus 的易用性。 -
-目前,Milvus 不支持标识去重,因此你需要保证插入实体标识的唯一性。 -
+Milvus 是开箱即用的产品,所有配置参数都有默认值。因此对初学者来说使用体验非常友好。随着深入了解 Milvus,你会发现整个 Milvus 都是灵活可配置的。你可以利用 Milvus 的高级特性来优化向量的存储与搜索,更好地服务于你的业务。 -- 集合(Collection): 包含一组同类实体,可以理解为关系型数据库系统中的表。 +Milvus 在 Apache 2 License 协议下发布,于 2019 年 10 月正式开源,是 [LF AI](https://lfai.foundation/) 基金会的孵化项目。Milvus 的源代码被托管于 Github 之上:[Milvus · 开源的特征向量相似度搜索引擎](https://github.com/milvus-io/milvus)。如果你想加入我们的开发者社区,欢迎访问:[Contribute to Milvus](https://github.com/milvus-io/milvus/blob/master/CONTRIBUTING.md#contributing-to-milvus)。 -- 段(Segment): 为了能处理大规模的数据,Milvus 会将数据分段。一个集合可以包含多个段。 - -- 分区(Partition): 用于将集合中的数据划分为几个独立的部分。 - -- 索引(Index):一种加速数据检索的数据结构。 - -- 映射(Mapping): 一个集合中数据的组织形式,可以理解为关系型数据库系统中的 Schema。 - -- 向量(Vector):一种由 N 维数组成的数据类型。是事物特征的抽象,可用于表征某个事物。 - -
-注意:目前,一个实体最多只能包含一个向量。 -
- - - - - -## 接下来你可以 - -- 了解 [特征向量](vector.md), [向量数据库](vector_db.md) 的发展现状和 [向量检索算法](index_method.md) -- 几分钟轻易搞定 [Milvus 安装](install_milvus.md) +如果你对 Milvus 有任何与功能、SDK 等相关的问题,欢迎加入 [Slack](https://join.slack.com/t/milvusio/shared_invite/zt-e0u4qu3k-bI2GDNys3ZqX1YCJ9OM~GQ) 参与讨论。 \ No newline at end of file diff --git a/site/zh-CN/about_milvus/what_is_milvus.md b/site/zh-CN/about_milvus/what_is_milvus.md deleted file mode 100644 index 9542760f9..000000000 --- a/site/zh-CN/about_milvus/what_is_milvus.md +++ /dev/null @@ -1,33 +0,0 @@ ---- -id: what_is_milvus.md ---- - -# Milvus 是什么 - -Milvus 是一款开源向量相似度搜索引擎,建立在 Faiss、NMSLIB、Annoy 等向量索引库基础之上,具有功能强大、稳定可靠以及易于使用等特点。Milvus 集成了这些向量索引库,隐藏了他们的复杂性,提供了一套简单而一致的 API。此外,Milvus 能够有效的管理向量数据,提供针对向量和非向量数据的增删改查的能力。除了提供针对向量的近实时搜索能力外,Milvus 可以对标量数据进行过滤。随着数据和查询规模的增加,Milvus 还提供了集群分片的解决方案,支持读写分离、水平扩展、动态扩容等功能,实现了对于超大数据规模的支持。目前,Milvus 是一个单节点主从式架构(Client-server model)的服务器,最高可以支持 TB 级特征数据的存储和搜索服务。对于有更大数据规模或者高并发需求的用户,可以使用目前尚在实验阶段的集群分片中间件 Mishards 进行部署。 - -在服务端,Milvus 由两部分组成:Milvus server 和 Meta store。 - -* Milvus server 提供了 Milvus 的主要功能,包括数据的存储与管理、数据的搜索等。 -* Meta store 则存储了 Milvus 的元数据。目前 Milvus 支持的元数据库可以是 MySQL 和 SQLite。 - -这些能力使得 Milvus 可以广泛地应用于以下场景: - -- 图像、视频、音频等音视频搜索领域 -- 文本搜索、推荐和交互式问答系统等文本搜索领域 -- 新药搜索、基因筛选等生物医药领域 - -除了提供核心的数据管理和搜索功能外,Milvus 还提供了 - -- 基于 JSON 的 DSL,提供用户灵活方便的搜索方式 -- 基于 Python / Java / Go / C++ 的 SDK 和 RESTful API -- 对接基于 Prometheus 的监控与告警系统 -- 基于 Docker和 Kubernetes 的部署方式 - -以上功能都极大地增强了 Milvus 的易用性。 - -Milvus 是开箱即用的产品,所有配置参数都有默认值。因此对初学者来说使用体验非常友好。随着深入了解 Milvus,你会发现整个 Milvus 都是灵活可配置的。你可以利用 Milvus 的高级特性来优化向量的存储与搜索,更好地服务于你的业务。 - -Milvus 在 Apache 2 License 协议下发布,于 2019 年 10 月正式开源,是 [LF AI](https://lfai.foundation/) 基金会的孵化项目。Milvus 的源代码被托管于 Github 之上:[Milvus · 开源的特征向量相似度搜索引擎](https://github.com/milvus-io/milvus)。如果你想加入我们的开发者社区,欢迎访问:[Contribute to Milvus](https://github.com/milvus-io/milvus/blob/master/CONTRIBUTING.md#contributing-to-milvus)。 - -如果你对 Milvus 有任何与功能、SDK 等相关的问题,欢迎加入 [Slack](https://join.slack.com/t/milvusio/shared_invite/zt-e0u4qu3k-bI2GDNys3ZqX1YCJ9OM~GQ) 参与讨论。 \ No newline at end of file diff --git a/site/zh-CN/menuStructure/cn.json b/site/zh-CN/menuStructure/cn.json index 791b80b19..d9f22c8f0 100644 --- a/site/zh-CN/menuStructure/cn.json +++ b/site/zh-CN/menuStructure/cn.json @@ -10,7 +10,7 @@ "isMenu": true }, { - "id": "what_is_milvus.md", + "id": "overview.md", "title": "Milvus 是什么", "label1": "about_milvus", "label2": "",