Skip to content

Latest commit

 

History

History
926 lines (678 loc) · 43.3 KB

README.md

File metadata and controls

926 lines (678 loc) · 43.3 KB

phantom Build Status

============== Asynchronous Scala DSL for Cassandra

Using phantom

The current version is: val phantomVersion = 0.8.0. Phantom is published to Maven Central and it's actively and avidly developed.

  1. Issues and questions
  2. Commercial support
  3. Integrating phantom in your project
  4. phantom columns

  5. Data modeling with phantom
  6. Querying with phantom

  7. Basic query examples

  8. Collection operators

  9. Automated schema generation
  10. Cassandra indexing

  11. Asynchronous iterators
  12. Batch statements

  13. Thrift integration
  14. Running the tests locally
  15. Contributing to phantom

  16. Copyright

back to top

We love Cassandra to bits and use it in every bit our stack. phantom makes it super trivial for Scala users to embrace Cassandra.

Cassandra is highly scalable and it's by far the most powerful database technology available, open source or otherwise.

Phantom is built on top of the Datastax Java Driver, which does most of the heavy lifting.

If you're completely new to Cassandra, a much better place to start is the Datastax Introduction to Cassandra

We are very happy to help implement missing features in phantom, answer questions about phantom, and occasionally help you out with Cassandra questions, although do note we're a bit short staffed!

You can get in touch via the newzly-phantom Google Group.

Commercial support

back to top

We, the people behind phantom run a software development house specialised in Scala, NoSQL and distributed systems. If you are after enterprise grade training or support for using phantom, Websudos is here to help!

We offer a comprehensive range of services, including but not limited to:

Training In house software development Team building Architecture planning Startup product development

We are big fans of open source and we will open source every project we can! To read more about our OSS efforts, click here.

back to top

For most things, all you need is phantom-dsl. Read through for information on other modules.

libraryDependencies ++= Seq(
  "com.newzly"  %% "phantom-dsl"                   % phantomVersion
)

The full list of available modules is:

libraryDependencies ++= Seq(
  "com.newzly"  %% "phantom-dsl"                   % phantomVersion,
  "com.newzly"  %% "phantom-cassandra-unit"        % phantomVersion,
  "com.newzly"  %% "phantom-example"               % phantomVersion,
  "com.newzly"  %% "phantom-thrift"                % phantomVersion,
  "com.newzly"  %% "phantom-test"                  % phantomVersion
)

back to top

This is the list of available columns and how they map to C* data types. This also includes the newly introduced static columns in C* 2.0.6.

The type of a static column can be any of the allowed primitive Cassandra types. phantom won't let you mixin a non-primitive via implicit magic.

phantom columns Java/Scala type Cassandra type
BigDecimalColumn scala.math.BigDecimal decimal
BigIntColumn scala.math.BigInt varint
BooleanColumn scala.Boolean boolean
DateColumn java.util.Date timestamp
DateTimeColumn org.joda.time.DateTime timestamp
DoubleColumn scala.Double double
FloatColumn scala.Float float
IntColumn scala.Int int
InetAddressColumn java.net.InetAddress inet
LongColumn scala.Long long
StringColumn java.lang.String text
UUIDColumn java.util.UUID uuid
TimeUUIDColumn java.util.UUID timeuuid
CounterColumn scala.Long counter
StaticColumn<type> <type> type static

back to top

Optional columns allow you to set a column to a null or a None. Use them when you really want something to be optional. The outcome is that instead of a T you get an Option[T] and you can match, fold, flatMap, map on a None.

The Optional part is handled at a DSL level, it's not translated to Cassandra in any way.

phantom columns Java/Scala type Cassandra columns
OptionalBigDecimalColumn Option[scala.math.BigDecimal] decimal
OptionalBigIntColumn Option[scala.math.BigInt] varint
OptionalBooleanColumn Option[scala.Boolean] boolean
OptionalDateColumn Option[java.util.Date] timestamp
OptionalDateTimeColumn Option[org.joda.time.DateTime] timestamp
OptionalDoubleColumn Option[scala.Double] double
OptionalFloatColumn Option[scala.Float] float
OptionalIntColumn Option[scala.Int] int
OptionalInetAddressColumn Option[java.net.InetAddress] inet
OptionalLongColumn Option[Long] long
OptionalStringColumn Option[java.lang.String] text
OptionalUUIDColumn Option[java.util.UUID] uuid
OptionalTimeUUID Option[java.util.UUID] timeuuid

back to top

Cassandra collections do not allow custom data types. Storing JSON as a string is possible, but it's still a text column as far as Cassandra is concerned. The type in the below example is always a default C* type.

phantom columns Cassandra columns
ListColumn.<type> list<type>
SetColumn.<type> set<type>
MapColumn.<type, type> map<type, type>

back to top

phantom uses a specific set of traits to enforce more advanced Cassandra limitations and schema rules at compile time.

back to top

This is the default partitioning key of the table, telling Cassandra how to divide data into partitions and store them accordingly. You must define at least one partition key for a table. Phantom will gently remind you of this with a fatal error.

If you use a single partition key, the PartitionKey will always be the first PrimaryKey in the schema.

It looks like this in CQL: PRIMARY_KEY(your_partition_key, primary_key_1, primary_key_2).

Using more than one PartitionKey[T] in your schema definition will output a Composite Key in Cassandra. PRIMARY_KEY((your_partition_key_1, your_partition_key2), primary_key_1, primary_key_2).

back to top

As it's name says, using this will mark a column as PrimaryKey. Using multiple values will result in a Compound Value. The first PrimaryKey is used to partition data. phantom will force you to always define a PartitionKey so you don't forget about how your data is partitioned. We also use this DSL restriction because we hope to do more clever things with it in the future.

A compound key in C* looks like this: PRIMARY_KEY(primary_key, primary_key_1, primary_key_2).

Before you add too many of these, remember they all have to go into a where clause. You can only query with a full primary key, even if it's compound. phantom can't yet give you a compile time error for this, but Cassandra will give you a runtime one.

back to top

This is a SecondaryIndex in Cassandra. It can help you enable querying really fast, but it's not exactly high performance. It's generally best to avoid it, we implemented it to show off what good guys we are.

When you mix in Index[T] on a column, phantom will let you use it in a where clause. However, don't forget to allowFiltering for such queries, otherwise C* will give you an error.

back to top

This can be used with either java.util.Date or org.joda.time.DateTime. It tells Cassandra to store records in a certain order based on this field.

An example might be: object timestamp extends DateTimeColumn(this) with ClusteringOrder[DateTime] with Ascending To fully define a clustering column, you MUST also mixin either Ascending or Descending to indicate the sorting order.

back to top

These columns are especially useful if you are building Thrift services. They are deeply integrated with Twitter Scrooge and relevant to the Twitter ecosystem(Finagle, Zipkin, Storm etc) They are available via the phantom-thrift module and you need to import com.newzly.phantom.thrift.Implicits._ to get them.

In the below scenario, the C* type is always text and the type you need to pass to the column is a Thrift struct, specifically com.twitter.scrooge.ThriftStruct. phantom will use a CompactThriftSerializer, store the record as a binary string and then reparse it on fetch.

Thrift serialization and de-serialization is extremely fast, so you don't need to worry about speed or performance overhead. You generally use these to store collections(small number of items), not big things.

phantom columns Cassandra columns
ThriftColumn.<type> text
ThriftListColumn.<type> list<text>
ThriftSetColumn.<type> set<text>
ThriftMapColumn.<type, type> map<text, text>

back to top

import java.util.{ Date, UUID }
import com.datastax.driver.core.Row
import com.newzly.phantom.sample.ExampleModel
import com.newzly.phantom.Implicits._

case class ExampleModel (
  id: Int,
  name: String,
  props: Map[String, String],
  timestamp: Int,
  test: Option[Int]
)

sealed class ExampleRecord extends CassandraTable[ExampleRecord, ExampleModel] {

  object id extends UUIDColumn(this) with PartitionKey[UUID]
  object timestamp extends DateTimeColumn(this) with ClusteringOrder with Ascending
  object name extends StringColumn(this)
  object props extends MapColumn[ExampleRecord, ExampleModel, String, String](this)
  object test extends OptionalIntColumn(this)

  override def fromRow(row: Row): ExampleModel = {
    ExampleModel(id(row), name(row), props(row), timestamp(row), test(row));
  }
}

back to top

The query syntax is inspired by the Foursquare Rogue library and aims to replicate CQL 3 as much as possible.

Phantom works with both Scala Futures and Twitter Futures as first class citizens.

back to top

Method name Description
where The WHERE clause in CQL
and Chains several clauses, creating a WHERE ... AND query
orderBy Adds an ORDER_BY column_name to the query
allowFiltering Allows Cassandra to filter records in memory. This is an expensive operation.
useConsistencyLevel Sets the consistency level to use.
setFetchSize Sets the maximum number of records to retrieve. Default is 10000
limit Sets the exact number of records to retrieve.

Select queries are very straightforward and enforce most limitations at compile time.

back to top

Operator name Description
eqs The "equals" operator. Will match if the objects are equal
in The "in" operator. Will match if the object is found the list of arguments
gt The "greater than" operator. Will match a the record is greater than the argument and exists
gte The "greater than or equals" operator. Will match a the record is greater than the argument and exists
lt The "lower than" operator. Will match a the record that is less than the argument and exists
lte The "lower than or equals" operator. Will match a the record that is less than the argument and exists

back to top

All partial select queries will return Tuples and are therefore limited to 22 fields. We haven't yet bothered to add more than 10 fields in the select, but you can always do a Pull Request. The file you are looking for is here. The 22 field limitation will change in Scala 2.11 and phantom will be updated once cross version compilation is enabled.

  def getNameById(id: UUID): Future[Option[String]] = {
    ExampleRecord.select(_.name).where(_.id eqs someId).one()
  }

  def getNameAndPropsById(id: UUID): Future[Option(String, Map[String, String])] {
    ExampleRecord.select(_.name, _.props).where(_.id eqs someId).one()
  }

back to top

Method name Description
value A type safe Insert query builder. Throws an error for null values.
valueOrNull This will accept a null without throwing an error.
useConsistencyLevel Sets the consistency level to use.
ttl Sets the "Time-To-Live" for the record.

back to top

Method name Description
where The WHERE clause in CQL
and Chains several clauses, creating a WHERE ... AND query
modify The actual update query builder
useConsistencyLevel Sets the consistency level to use.
onflyIf Addition update condition. Used on non-primary columns

back to top

Method name Description
where The WHERE clause in CQL
useConsistencyLevel Sets the consistency level to use.

back to top

The full list can be found in CQLQuery.scala.

Method name Description
tracing_= The Cassandra utility method. Enables or disables tracing.
queryString Get the output CQL 3 query of a phantom query.
consistencyLevel Retrieves the consistency level in use.
consistencyLevel_= Sets the consistency level to use.
retryPolicy Retrieves the RetryPolicy in use.
retryPolicy_= Sets the RetryPolicy to use.
serialConsistencyLevel Retrieves the serial consistency level in use.
serialConsistencyLevel_= Sets the serial consistency level to use.
forceNoValues_= Sets the serial consistency level to use.
routingKey Retrieves the Routing Key as a ByteBuffer.

back to top

ExampleRecord.select.one() // When you only want to select one record
ExampleRecord.update.where(_.name eqs name).modify(_.name setTo "someOtherName").future() // When you don't care about the return type.
ExampleRecord.select.fetchEnumerator // when you need an Enumerator
ExampleRecord.select.fetch // When you want to fetch a Seq[Record]

back to top

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future

object ExampleRecord extends ExampleRecord {
  override val tableName = "examplerecord"

  // now define a session, a normal Datastax cluster connection
  implicit val session = SomeCassandraClient.session;

  def getRecordsByName(name: String): Future[Seq[ExampleModel]] = {
    ExampleRecord.select.where(_.name eqs name).fetch
  }

  def getOneRecordByName(name: String, someId: UUID): Future[Option[ExampleModel]] = {
    ExampleRecord.select.where(_.name eqs name).and(_.id eqs someId).one()
  }
}

back to top

ExampleRecord.select.get() // When you only want to select one record
ExampleRecord.update.where(_.name eqs name).modify(_.name setTo "someOtherName").execute() // When you don't care about the return type.
ExampleRecord.select.enumerate // when you need an Enumerator
ExampleRecord.select.collect // When you want to fetch a Seq[Record]

back to top

import com.twitter.util.Future

object ExampleRecord extends ExampleRecord {
  override val tableName = "examplerecord"

  // now define a session, a normal Datastax cluster connection
  implicit val session = SomeCassandraClient.session;

  def getRecordsByName(name: String): Future[Seq[ExampleModel]] = {
    ExampleRecord.select.where(_.name eqs name).collect
  }

  def getOneRecordByName(name: String, someId: UUID): Future[Option[ExampleModel]] = {
    ExampleRecord.select.where(_.name eqs name).and(_.id eqs someId).get()
  }
}

back to top

Based on the above list of columns, phantom supports CQL 3 modify operations for CQL 3 collections: list, set, map. All operators will be available in an update query, specifically:

ExampleRecord.update.where(_.id eqs someId).modify(_.someList $OPERATOR $args).future().

back to top

Examples in ListOperatorsTest.scala.

Name Description
prepend Adds an item to the head of the list
prependAll Adds multiple items to the head of the list
append Adds an item to the tail of the list
appendAll Adds multiple items to the tail of the list
discard Removes the given item from the list.
discardAll Removes all given items from the list.
setIdIx Updates a specific index in the list

back to top

Sets have a better performance than lists, as the Cassandra documentation suggests. Examples in SetOperationsTest.scala.

Name Description
add Adds an item to the tail of the set
addAll Adds multiple items to the tail of the set
remove Removes the given item from the set.
removeAll Removes all given items from the set.

back to top

Both the key and value types of a Map must be Cassandra primitives. Examples in MapOperationsTest.scala:

Name Description
put Adds an (key -> value) pair to the map
putAll Adds multiple (key -> value) pairs to the map

back to top

Replication strategies and more advanced features are not yet available in phantom, but CQL 3 Table schemas are automatically generated from the Scala code. To create a schema in Cassandra from a table definition:

import scala.concurrent.Await
import scala.concurrent.duration._

Await.result(ExampleRecord.create().future(), 5000 millis)

Of course, you don't have to block unless you want to.

back to top

import scala.concurrent.Await
import scala.concurrent.duration._
import com.newzly.phantom.Implicits._

sealed class ExampleRecord2 extends CassandraTable[ExampleRecord2, ExampleModel] with LongOrderKey[ExampleRecod2, ExampleRecord] {

  object id extends UUIDColumn(this) with PartitionKey[UUID]
  object timestamp extends DateTimeColumn(this)
  object name extends StringColumn(this)
  object props extends MapColumn[ExampleRecord2, ExampleRecord, String, String](this)
  object test extends OptionalIntColumn(this)

  override def fromRow(row: Row): ExampleModel = {
    ExampleModel(id(row), name(row), props(row), timestamp(row), test(row));
  }
}


val orderedResult = Await.result(Articles.select.where(_.id gtToken one.get.id ).fetch, 5000 millis)

back to top

Operator name Description
eqsToken The "equals" operator. Will match if the objects are equal
gtToken The "greater than" operator. Will match a the record is greater than the argument
gteToken The "greater than or equals" operator. Will match a the record is greater than the argument
ltToken The "lower than" operator. Will match a the record that is less than the argument and exists
lteToken The "lower than or equals" operator. Will match a the record that is less than the argument

For more details on how to use Cassandra partition tokens, see SkipRecordsByToken.scala

back to top

phantom supports Cassandra Time Series with both java.util.Date and org.joda.time.DateTime . To use them, simply mixin com.newzly.phantom.keys.ClusteringOrder and either Ascending or Descending.

Restrictions are enforced at compile time.

import com.newzly.phantom.Implicits._

sealed class ExampleRecord3 extends CassandraTable[ExampleRecord3, ExampleModel] with LongOrderKey[ExampleRecod3, ExampleRecord] {

  object id extends UUIDColumn(this) with PartitionKey[UUID]
  object timestamp extends DateTimeColumn(this) with ClusteringOrder with Ascending
  object name extends StringColumn(this)
  object props extends MapColumn[ExampleRecord2, ExampleRecord, String, String](this)
  object test extends OptionalIntColumn(this)

  override def fromRow(row: Row): ExampleModel = {
    ExampleModel(id(row), name(row), props(row), timestamp(row), test(row));
  }
}

Automatic schema generation can do all the setup for you.

back to top

Phantom also supports using Compound keys out of the box. The schema can once again by auto-generated.

A table can have only one PartitionKey but several PrimaryKey definitions. Phantom will use these keys to build a compound value. Example scenario, with the compound key: (id, timestamp, name)

import org.joda.time.DateTime
import com.newzly.phantom.Implicits._

sealed class ExampleRecord3 extends CassandraTable[ExampleRecord3, ExampleModel] with LongOrderKey[ExampleRecod3, ExampleRecord] {

  object id extends UUIDColumn(this) with PartitionKey[UUID]
  object timestamp extends DateTimeColumn(this) with PrimaryKey[DateTime]
  object name extends StringColumn(this) with PrimaryKey[String]
  object props extends MapColumn[ExampleRecord2, ExampleRecord, String, String](this)
  object test extends OptionalIntColumn(this)

  override def fromRow(row: Row): ExampleModel = {
    ExampleModel(id(row), name(row), props(row), timestamp(row), test(row));
  }
}

back to top

When you want to use a column in a where clause, you need an index on it. Cassandra data modeling is out of the scope of this writing, but phantom offers com.newzly.phantom.keys.Index to enable querying.

The CQL 3 schema for secondary indexes can also be auto-generated with ExampleRecord4.create().

SELECT is the only query you can perform with an Index column. This is a Cassandra limitation. The relevant tests are found here.

import java.util.UUID
import org.joda.time.DateTime
import com.newzly.phantom.Implicits._

sealed class ExampleRecord4 extends CassandraTable[ExampleRecord4, ExampleModel] with LongOrderKey[ExampleRecod4, ExampleRecord] {

  object id extends UUIDColumn(this) with PartitionKey[UUID]
  object timestamp extends DateTimeColumn(this) with Index[DateTime]
  object name extends StringColumn(this) with Index[String]
  object props extends MapColumn[ExampleRecord2, ExampleRecord, String, String](this)
  object test extends OptionalIntColumn(this)

  override def fromRow(row: Row): ExampleModel = {
    ExampleModel(id(row), name(row), props(row), timestamp(row), test(row));
  }
}

back to top

Phantom comes packed with CQL rows asynchronous lazy iterators to help you deal with billions of records. phantom iterators are based on Play iterators with very lightweight integration.

The functionality is identical with respect to asynchronous, lazy behaviour and available methods. For more on this, see this Play tutorial

Usage is trivial. If you want to use slice, take or drop with iterators, the partitioner needs to be ordered.

import scala.concurrent.Await
import scala.concurrent.duration._
import org.joda.time.DateTime
import com.newzly.phantom.Implicits._


sealed class ExampleRecord3 extends CassandraTable[ExampleRecord3, ExampleModel] with LongOrderKey[ExampleRecord3, ExampleRecord] {

  object id extends UUIDColumn(this) with PartitionKey[UUID]
  object timestamp extends DateTimeColumn(this) with PrimaryKey[DateTime]
  object name extends StringColumn(this) with PrimaryKey[String]
  object props extends MapColumn[ExampleRecord2, ExampleRecord, String, String](this)
  object test extends OptionalIntColumn(this)

  override def fromRow(row: Row): ExampleModel = {
    ExampleModel(id(row), name(row), props(row), timestamp(row), test(row));
  }
}

object ExampleRecord3 extends ExampleRecord3 {
  def getRecords(start: Int, limit: Int): Future[Set[ExampleModel]] = {
    select.fetchEnumerator.slice(start, limit).collect
  }
}

back to top

phantom also brrings in support for batch statements. To use them, see IterateeBigTest.scala

We have tested with 10,000 statements per batch, and 1000 batches processed simulatenously. Before you run the test, beware that it takes ~40 minutes.

Batches use lazy iterators and daisy chain them to offer thread safe behaviour. They are not memory intensive and you can expect consistent processing speed even with 1 000 000 statements per batch.

Batches are immutable and adding a new record will result in a new Batch, just like most things Scala, so be careful to chain the calls.

phantom also supports COUNTER batch updates and UNLOGGED batch updates.

back to top

import com.newzly.phantom.Implicits._

BatchStatement()
    .add(ExampleRecord.update.where(_.id eqs someId).modify(_.name setTo "blabla"))
    .add(ExampleRecord.update.where(_.id eqs someOtherId).modify(_.name setTo "blabla2"))
    .future()

back to top

import com.newzly.phantom.Implicits._

CounterBatchStatement()
    .add(ExampleRecord.update.where(_.id eqs someId).modify(_.someCounter increment 500L))
    .add(ExampleRecord.update.where(_.id eqs someOtherId).modify(_.someCounter decrement 300L))
    .future()

back to top

import com.newzly.phantom.Implicits._

UnloggedBatchStatement()
    .add(ExampleRecord.update.where(_.id eqs someId).modify(_.name setTo "blabla"))
    .add(ExampleRecord.update.where(_.id eqs someOtherId).modify(_.name setTo "blabla2"))
    .future()

back to top

We use Apache Thrift extensively for our backend services. phantom is very easy to integrate with Thrift models and uses Twitter Scrooge to compile them. Thrift integration is optional and available via "com.newzly" %% "phantom-thrift" % phantomVersion.

namespace java com.newzly.phantom.sample.ExampleModel

stuct ExampleModel {
  1: required i32 id,
  2: required string name,
  3: required Map&lt;string, string&gt; props,
  4: required i32 timestamp
  5: optional i32 test
}

back to top

phantom uses Embedded Cassandra to run tests without a local Cassandra server running. You need two terminals to run the tests, one for Embedded Cassandra and one for the actual tests.

sbt
project phantom-cassandra-unit
run

Then in a new terminal

sbt
project phantom-test
test

back to top

Phantom was developed at newzly as an in-house project. All Cassandra integration at newzly goes through phantom.

back to top

Special thanks to Viktor Taranenko from WhiskLabs, who gave us the original idea.

Copyright 2013 WhiskLabs, Copyright 2013 - 2014 newzly.

Contributing to phantom

back to top

Contributions are most welcome!

To contribute, simply submit a "Pull request" via GitHub.

We use GitFlow as a branching model and SemVer for versioning.

  • When you submit a "Pull request" we require all changes to be squashed.
  • We never merge more than one commit at a time. All the n commits on your feature branch must be squashed.
  • We won't look at the pull request until Travis CI says the tests pass, make sure tests go well.

In spirit, we follow the Twitter Scala Style Guidelines. We will reject your pull request if it doesn't meet code standards, but we'll happily give you a hand to get it right.

Some of the things that will make us seriously frown:

  • Blocking when you don't have to. It just makes our eyes hurt when we see useless blocking.
  • Testing should be thread safe and fully async, use ParallelTestExecution if you want to show off.
  • Use the common patterns you already see here, we've done a lot of work to make it easy.
  • Don't randomly import stuff. We are very big on alphabetized clean imports.