-
Notifications
You must be signed in to change notification settings - Fork 5
/
function_app.py
766 lines (674 loc) · 29.4 KB
/
function_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
# First imports, to make sure the following logs are first
from helpers.config import CONFIG
from helpers.logging import APP_NAME, logger
logger.info(f"{APP_NAME} v{CONFIG.version}")
import asyncio
import json
import re
from base64 import b64encode
from os import getenv, remove
from tempfile import NamedTemporaryFile
from typing import IO, Optional, TypeVar
import azure.functions as func
import pymupdf
# General imports
from azure.core.exceptions import ResourceExistsError
from azure.storage.blob import BlobProperties
from azure.storage.blob.aio import BlobClient, ContainerClient
from azurefunctions.extensions.bindings.blob import BlobClient as BlobClientTrigger
from pydantic import ValidationError
from unidecode import unidecode
from helpers.file import (
detect_extension,
has_excessive_repetition,
hash_text,
replace_extension,
replace_root_path,
sanitize_text,
)
from helpers.models import (
ChunkedDocumentModel,
ExtractedDocumentModel,
FactedDocumentModel,
FactedLlmModel,
FactModel,
IndexedDocumentModel,
PagedDocumentModel,
SynthetisedDocumentModel,
)
# Azure Functions
app = func.FunctionApp()
# Storage Account
CHUNCK_FOLDER = "2-chunck"
CONTAINER_NAME = "trainings"
CRITIC_FOLDER = "6-critic"
EXTRACT_FOLDER = "1-extract"
FACT_FOLDER = "5-fact"
PAGE_FOLDER = "4-page"
RAW_FOLDER = "raw"
SANITIZE_FOLDER = "0-sanitize"
SYNTHESIS_FOLDER = "3-synthesis"
# Clients
_container_client: Optional[ContainerClient] = None
# Custom types
T = TypeVar("T")
@app.blob_trigger(
arg_name="input",
connection="AzureWebJobsStorage",
data_type=func.DataType.BINARY,
path=f"{CONTAINER_NAME}/{RAW_FOLDER}/{{name}}",
)
async def raw_to_sanitize(input: BlobClientTrigger) -> None:
"""
First, raw documents are sanitized to remove any sensitive information.
"""
async def _upload(local_file: IO, remote_path: str) -> None:
remote_path = unidecode(
replace_root_path(remote_path, SANITIZE_FOLDER), replace_str=""
) # Decode possible non ASCII characters
out_client = await _use_blob_client(remote_path)
await out_client.upload_blob(
data=local_file,
overwrite=True, # For the first upload, overwrite, next steps will validate MD5 for cache
)
# Read
async with await _use_blob_client(
name=input.blob_name, # type: ignore
snapshot=input.snapshot, # type: ignore
) as blob_client:
in_remote_path = blob_client.blob_name
logger.info(f"Processing raw blob ({in_remote_path})")
with NamedTemporaryFile() as in_local_path: # Temp file for source
# Download and save
downloader = await blob_client.download_blob()
await downloader.readinto(in_local_path)
in_local_path.seek(0) # Reset file pointer
if detect_extension(in_remote_path) in {
".pdf",
".xps",
".epub",
".mobi",
".fb2",
".cbz",
".svg",
".txt",
}: # Sanitize with PyMuPDF
logger.info(f"Sanitizing ({in_remote_path})")
doc_client = CONFIG.document_intelligence.instance()
# Open
in_pdf = pymupdf.open(in_local_path)
if not in_pdf.is_pdf: # Convert to PDF
in_pdf = pymupdf.open("pdf", in_pdf.convert_to_pdf())
# Sanitize
in_pdf.scrub(
hidden_text=False, # Keep hidden text (it may contain OCR)
remove_links=False, # Keep links (they are extracted later)
reset_fields=False, # Keep form fields (they are extracted later)
)
for pages_numbers, i, chuncks_count in doc_client.chunck(
in_pdf.page_count
): # Iterate over chuncks
out_remote_path = replace_extension(in_remote_path, f"-{i}.pdf")
out_local_path = NamedTemporaryFile(
delete=False
) # Temp file for destination
out_local_path.close() # Close to allow pymupdf to open it later
logger.info(
f"Saving PDF file {i + 1}/{chuncks_count} ({out_remote_path})"
)
# Create new PDF and insert selected pages
out_pdf = pymupdf.Document()
for pages_number in pages_numbers:
out_pdf.insert_pdf(
in_pdf, from_page=pages_number, to_page=pages_number
)
# Save and optimize
out_pdf.save(
out_local_path.name,
appearance=True, # Annotate buttons, form fields, and links
clean=True, # Clean and sanitize content streams
compression_effort=100, # Maximum compression
deflate_fonts=True, # Compress uncompressed fonts
deflate_images=True, # Compress uncompressed images
deflate=True, # Compress uncompressed streams
garbage=4, # Remove unused objects
linear=True, # Linearize the PDF for fast web view
preserve_metadata=True, # Preserve original metadata
)
# Upload
with open(out_local_path.name, "rb") as out_local_path:
await _upload(
local_file=out_local_path,
remote_path=out_remote_path,
)
remove(out_local_path.name) # Clean-up
else: # Store as is
logger.info(f"Saving raw blob as is ({in_remote_path})")
await _upload(
local_file=in_local_path,
remote_path=in_remote_path,
)
@app.blob_trigger(
arg_name="input",
connection="AzureWebJobsStorage",
data_type=func.DataType.BINARY,
path=f"{CONTAINER_NAME}/{SANITIZE_FOLDER}/{{name}}",
)
async def sanitize_to_extract(input: BlobClientTrigger) -> None:
"""
First, document content is extracted from its binary form.
"""
# Read
async with await _use_blob_client(
name=input.blob_name, # type: ignore
snapshot=input.snapshot, # type: ignore
) as blob_client:
in_remote_path = blob_client.blob_name
blob_properties: BlobProperties = await blob_client.get_blob_properties()
blob_md5 = b64encode(
blob_properties.content_settings.content_md5
).hex() # See: https://github.com/Azure/azure-sdk-for-python/issues/13104#issuecomment-678033167
logger.info(f"Processing raw blob ({in_remote_path})")
with NamedTemporaryFile() as in_local_path: # Temp file for source
# Download and save
downloader = await blob_client.download_blob()
await downloader.readinto(in_local_path)
in_local_path.seek(0) # Reset file pointer
doc_client = CONFIG.document_intelligence.instance()
if (
detect_extension(in_remote_path) in doc_client.compatible_formats()
): # Analyze document
logger.info(
f"Extracting content with Document Intelligence ({in_remote_path})"
)
content, title, langs = await doc_client.analyze(
document=in_local_path.file,
file_name=in_remote_path,
)
format = "markdown"
# Clean content
content = sanitize_text(content)
else: # Store as is
logger.info(f"Extracting binary content ({in_remote_path})")
with open(in_local_path.name, "rb") as in_local_path:
content = in_local_path.read().decode("utf-8")
format = "raw"
langs = None
title = None
# Build model
if not content:
logger.warning(f"Content skipped ({in_remote_path})")
return
raw_text_model = ExtractedDocumentModel(
document_content=content,
file_md5=blob_md5,
file_path=in_remote_path,
format=format,
langs=langs,
title=title,
)
# Store
out_path = f"{EXTRACT_FOLDER}/{blob_md5}.json"
out_client = await _use_blob_client(out_path)
try:
await out_client.upload_blob(data=raw_text_model.model_dump_json())
except ResourceExistsError:
logger.info(f"Document already exists, skipping ({out_path})")
@app.blob_trigger(
arg_name="input",
connection="AzureWebJobsStorage",
data_type=func.DataType.BINARY,
path=f"{CONTAINER_NAME}/{EXTRACT_FOLDER}/{{name}}",
)
async def extract_to_chunck(input: BlobClientTrigger) -> None:
"""
Second, document content is chunked into smaller parts to make it understandable by the configured LLM.
"""
# Read
async with await _use_blob_client(
name=input.blob_name, # type: ignore
snapshot=input.snapshot, # type: ignore
) as blob_client:
blob_name = blob_client.blob_name
logger.info(f"Processing extracted blob ({blob_name})")
downloader = await blob_client.download_blob()
# Deserialize
extracted_model = ExtractedDocumentModel.model_validate_json(
await downloader.readall()
)
# Prepare chunks for LLM
llm_client = CONFIG.llm.selected(
is_fast=False, # We will use the slow model next step
).instance()
chuncks = llm_client.chunck(text=extracted_model.document_content)
logger.info(f"Splited to {len(chuncks)} chuncks ({blob_name})")
# Store
for i, chunck in enumerate(chuncks): # TODO: Make this async
out_model = ChunkedDocumentModel(
chunk_content=chunck,
chunk_number=i,
file_md5=extracted_model.file_md5,
file_path=extracted_model.file_path,
format=extracted_model.format,
langs=extracted_model.langs,
title=extracted_model.title,
)
out_path = replace_root_path(
replace_extension(blob_name, f"-{i}.json"), CHUNCK_FOLDER
)
logger.info(f"Saving chunck {i + 1}/{len(chuncks)} ({out_path})")
out_client = await _use_blob_client(out_path)
try:
await out_client.upload_blob(data=out_model.model_dump_json())
except ResourceExistsError:
logger.info(f"Chunck already exists, skipping ({out_path})")
@app.blob_trigger(
arg_name="input",
connection="AzureWebJobsStorage",
data_type=func.DataType.BINARY,
path=f"{CONTAINER_NAME}/{CHUNCK_FOLDER}/{{name}}",
)
async def chunck_to_synthesis(input: BlobClientTrigger) -> None:
"""
Third, chunks are synthesised into a coherent text.
"""
# Read
async with await _use_blob_client(
name=input.blob_name, # type: ignore
snapshot=input.snapshot, # type: ignore
) as blob_client:
blob_name = blob_client.blob_name
logger.info(f"Processing chuncked blob ({blob_name})")
downloader = await blob_client.download_blob()
# Deserialize
chuncked_model = ChunkedDocumentModel.model_validate_json(
await downloader.readall()
)
# LLM does its magic
def _validate(req: Optional[str]) -> tuple[bool, Optional[str], Optional[str]]:
if not req:
return False, "Empty response", None
req = req.strip()
if len(req) < 10: # Arbitrary minimum length
return False, "Response too short", None
return True, None, req
llm_client = CONFIG.llm.selected(
is_fast=False, # We want high quality summaries because they are used to avoid hallucinations in the next steps
).instance()
synthesis_str = await llm_client.generate(
max_tokens=500, # 500 tokens ~= 375 words
res_type=str,
validation_callback=_validate,
prompt=f"""
Assistant is an expert data analyst with 20 years of experience.
# Objective
Synthesise the document. Content come from a chunked document created with an OCR tool, it may contain errors, repetitions, or missing parts, do your best to understand it.
# Rules
- Answer only with the synthesis, nothing else
- Answers in English, even if the document is in another language
- Be concise
- Outline the main points but not the details
- Use only the information provided in the document
# Document metadata
- Format: {chuncked_model.format}
- Lang: {", ".join(chuncked_model.langs) if chuncked_model.langs else "N/A"}
- Title: {chuncked_model.title if chuncked_model.title else "N/A"}
# Response format
[synthesis, single paragraph]
## Example 1
Content: Regulatory context. Scientific publications are unequivocal about the urgent challenges posed by climate change and the need for a transition to a climate-neutral economy. The International Energy Agency (IEA) asserts, in its Net Zero Emissions (NZE) scenario, that achieving carbon neutrality by 2050 and limiting warming to 1.5℃ by the end of the century requires an immediate end to all new fossil fuel exploration projects.
Synthesis: This document addresses the urgent challenges posed by climate change and the need for a transition to a climate-neutral economy. Drafted by the International Energy Agency (IEA), the "Net Zero Emissions" (NZE) program aims to achieve carbon neutrality and limit global warming.
## Example 2
Content: Life insurance fees: In order to increase the transparency of fees on these contracts, Gan Vie undertakes to update the information below on an annual basis. Last update September 01, 2023. Introductory remarks: contract management fees correspond to fees deducted directly by the insurer from the assets in Units of Account or in Euros. Additional fees may be charged depending on the management method chosen.
Synthesis: Gan Vie undertakes to update information on life insurance fees annually. Fees are billed directly by the insurer, and additional fees may apply.
# Document content
{chuncked_model.chunk_content}
""", # TODO: Add at least 5 examples for different contexts
)
# Build model
synthesis_model = SynthetisedDocumentModel(
chunk_content=chuncked_model.chunk_content,
chunk_number=chuncked_model.chunk_number,
file_md5=chuncked_model.file_md5,
file_path=chuncked_model.file_path,
format=chuncked_model.format,
langs=chuncked_model.langs,
synthesis=synthesis_str,
title=chuncked_model.title,
)
# Store
out_path = replace_root_path(
replace_extension(blob_name, ".json"), SYNTHESIS_FOLDER
)
out_client = await _use_blob_client(out_path)
try:
await out_client.upload_blob(data=synthesis_model.model_dump_json())
except ResourceExistsError:
logger.info(f"Synthesis already exists, skipping ({out_path})")
@app.blob_trigger(
arg_name="input",
connection="AzureWebJobsStorage",
data_type=func.DataType.BINARY,
path=f"{CONTAINER_NAME}/{SYNTHESIS_FOLDER}/{{name}}",
)
async def synthesis_to_page(input: BlobClientTrigger) -> None:
"""
Fourth, synthesises are chunked into pages.
Pages are cleaned and filtered for repetitions (indicating low-quality content).
"""
# Read
async with await _use_blob_client(
name=input.blob_name, # type: ignore
snapshot=input.snapshot, # type: ignore
) as blob_client:
blob_name = blob_client.blob_name
logger.info(f"Processing synthesis blob ({blob_name})")
downloader = await blob_client.download_blob()
# Deserialize
synthesis_model = SynthetisedDocumentModel.model_validate_json(
await downloader.readall()
)
# Prepare chunks for LLM
llm_client = CONFIG.llm.selected(
is_fast=True, # We will use the fast model
).instance()
pages = llm_client.chunck(
max_tokens=CONFIG.features.page_split_size,
text=synthesis_model.chunk_content,
)
logger.info(f"Splited to {len(pages)} pages ({blob_name})")
# Store
for i, page in enumerate(pages): # TODO: Make this async
# Filter-out pages with excessive repetition
if has_excessive_repetition(
text=page,
threshold_ratio=1.5, # We are less strict than the paper because this is all normally internal data and we are not training a model
):
logger.warning(f"Repetition detected, skipping ({blob_name})")
continue
out_model = PagedDocumentModel(
chunk_content=synthesis_model.chunk_content,
chunk_number=synthesis_model.chunk_number,
file_md5=synthesis_model.file_md5,
file_path=synthesis_model.file_path,
format=synthesis_model.format,
langs=synthesis_model.langs,
page_content=page,
page_number=i,
synthesis=synthesis_model.synthesis,
title=synthesis_model.title,
)
out_path = replace_root_path(
replace_extension(blob_name, f"-{i}.json"), PAGE_FOLDER
)
logger.info(f"Saving page {i + 1}/{len(pages)} ({out_path})")
out_client = await _use_blob_client(out_path)
try:
await out_client.upload_blob(data=out_model.model_dump_json())
except ResourceExistsError:
logger.info(f"Page already exists, skipping ({out_path})")
@app.blob_trigger(
arg_name="input",
connection="AzureWebJobsStorage",
data_type=func.DataType.BINARY,
path=f"{CONTAINER_NAME}/{PAGE_FOLDER}/{{name}}",
)
async def page_to_fact(input: BlobClientTrigger) -> None:
# Read
async with await _use_blob_client(
name=input.blob_name, # type: ignore
snapshot=input.snapshot, # type: ignore
) as blob_client:
blob_name = blob_client.blob_name
logger.info(f"Processing repetition-filtered blob ({blob_name})")
downloader = await blob_client.download_blob()
# Deserialize
paged_model = PagedDocumentModel.model_validate_json(await downloader.readall())
# LLM does its magic
llm_client = CONFIG.llm.selected(
is_fast=True, # We will use the fast model
).instance()
facts: list[FactModel] = []
for _ in range(CONFIG.features.fact_iterations): # We will generate facts 10 times
def _validate(
req: Optional[str],
) -> tuple[bool, Optional[str], Optional[FactedLlmModel]]:
if not req:
return False, "Empty response", None
try:
return True, None, FactedLlmModel.model_validate_json(req)
except ValidationError as e:
return False, str(e), None
facted_llm_model = await llm_client.generate(
res_type=FactedLlmModel,
temperature=1, # We want creative answers
validate_json=True,
validation_callback=_validate,
prompt=f"""
Assistant is an expert data analyst with 20 years of experience.
# Objective
Create new question/answer pairs for a document. Content come from a paged document created with an OCR tool, it may contain errors, repetitions, or missing parts, do your best to understand it.
# Rules
- Answers in English, even if the document is in another language
- Be concise
- New facts must be on different points than the ones already generated
- Only use the information provided in the document
# Document metadata
- Format: {format}
- Lang: {", ".join(paged_model.langs) if paged_model.langs else "N/A"}
- Title: {paged_model.title or "N/A"}
# Document synthesis
{paged_model.synthesis}
# Document content
{paged_model.page_content}
# Facts already generated
{FactedLlmModel(facts=facts).model_dump_json() if facts else "N/A"}
# Response format (JSON schema)
{json.dumps(FactedLlmModel.model_json_schema())}
## Example 1
Synthesis: This document addresses the demographic challenges faced by the country. The population is aging, and the birth rate is declining. The government has implemented policies to address these issues.
Content: The mayor of the Parisian district of Montmartre has announced a new initiative to address the demographic issues. This is a first step for the capital.
Response: {FactedLlmModel(facts=[FactModel(question="What is the capital of France?", answer="Paris", context="Paris, as the capital of France, is the political, economic, and cultural center of the country.")]).model_dump_json()}
""", # TODO: Add at least 5 examples for different contexts
)
if not facted_llm_model:
continue
facts += facted_llm_model.facts
if not facts:
logger.info(f"No facts detected, skipping")
return
logger.info(f"Generated {len(facts)} facts ({blob_name})")
# Build model
facted_document_model = FactedDocumentModel(
chunk_content=paged_model.chunk_content,
chunk_number=paged_model.chunk_number,
facts=facts,
file_md5=paged_model.file_md5,
file_path=paged_model.file_path,
format=paged_model.format,
langs=paged_model.langs,
page_content=paged_model.page_content,
page_number=paged_model.page_number,
synthesis=paged_model.synthesis,
title=paged_model.title,
)
# Store
out_path = replace_root_path(replace_extension(blob_name, ".json"), FACT_FOLDER)
out_client = await _use_blob_client(out_path)
try:
await out_client.upload_blob(data=facted_document_model.model_dump_json())
except ResourceExistsError:
logger.info(f"Fact already exists, skipping ({out_path})")
@app.blob_trigger(
arg_name="input",
connection="AzureWebJobsStorage",
data_type=func.DataType.BINARY,
path=f"{CONTAINER_NAME}/{FACT_FOLDER}/{{name}}",
)
async def fact_to_critic(input: BlobClientTrigger) -> None:
# Read
async with await _use_blob_client(
name=input.blob_name, # type: ignore
snapshot=input.snapshot, # type: ignore
) as blob_client:
blob_name = blob_client.blob_name
logger.info(f"Processing fact blob ({blob_name})")
downloader = await blob_client.download_blob()
# Deserialize
facted_model = FactedDocumentModel.model_validate_json(
await downloader.readall()
)
# Score facts
initial_fact_count = len(facted_model.facts)
def _validate(req: Optional[str]) -> tuple[bool, Optional[str], Optional[float]]:
if not req:
return False, "Empty response", None
req = req.strip()
try:
return True, None, float(req)
except ValueError:
group = re.search(r"\d+\.\d+", req)
if group:
return True, None, float(group.group())
return False, "Score not detected", None
llm_client = CONFIG.llm.selected(
is_fast=False, # We want high quality to avoid using human validation which is even more costly and slower
).instance()
fact_scores = await asyncio.gather(
*[
llm_client.generate(
max_tokens=10, # We only need a float score
res_type=float,
validation_callback=_validate,
prompt=f"""
Assistant is an expert data analyst with 20 years of experience.
# Objective
Evaluate the quality of a fact. The fact is a question/answer pair created from a paged document.
# Rules
- Answer only with the score, nothing else
- High scores indicate that the fact is likely to be correct and relevant
- Low scores indicate that the fact is likely to be incorrect or irrelevant
- Only use the information provided in the document
- The score should reflect the quality of the fact based on the document synthesis, page content, and context
# Document metadata
- Format: {format}
- Lang: {", ".join(facted_model.langs) if facted_model.langs else "N/A"}
- Title: {facted_model.title or "N/A"}
# Document synthesis
{facted_model.synthesis}
# Page content
{facted_model.page_content}
# Response format
[score, a float between 0.0 and 1.0]
## Example 1
Question: What is the capital of France?
Answer: Paris
Context: Paris, as the capital of France, is the political, economic, and cultural center of the country.
Assistant: 1.0
## Example 2
Question: What is the ISIN code for the stock?
Answer: US0378331005
Context: The ISIN code for the stock is FR0000120172.
Assistant: 0.0
## Example 3
Question: In which year was the company founded?
Answer: 1939
Context: The company, by its founder, was established during World War II to provide essential services to the population. Its exact founding date is unknown.
Assistant: 0.6
## Example 4
Question: What is the main product of the company?
Answer: A software suite
Context: The company is known for its software suite called "Office", which includes applications such as a text editor, a spreadsheet, and a presentation program.
Assistant: 0.8
# Fact
Question: {fact.question}
Answer: {fact.answer}
Context: {fact.context}
""", # TODO: Add at least 5 examples for different contexts
)
for fact in facted_model.facts
]
)
# Filter facts
kept_facts = []
for i, fact_score in enumerate(fact_scores):
if (
fact_score >= CONFIG.features.fact_score_threshold
): # Discard low quality facts
kept_facts.append(facted_model.facts[i])
facted_model.facts = kept_facts
if not facted_model.facts:
logger.info(f"No facts left, skipping")
return
logger.info(
f"Filtered to {len(facted_model.facts)}/{initial_fact_count} facts ({blob_name})"
)
# Store
out_path = replace_root_path(replace_extension(blob_name, ".json"), CRITIC_FOLDER)
out_client = await _use_blob_client(out_path)
try:
await out_client.upload_blob(data=facted_model.model_dump_json())
except ResourceExistsError:
logger.info(f"Critic already exists, skipping ({out_path})")
@app.blob_trigger(
arg_name="input",
connection="AzureWebJobsStorage",
data_type=func.DataType.BINARY,
path=f"{CONTAINER_NAME}/{CRITIC_FOLDER}/{{name}}",
)
async def critic_to_index(input: BlobClientTrigger) -> None:
# Read
async with await _use_blob_client(
name=input.blob_name, # type: ignore
snapshot=input.snapshot, # type: ignore
) as blob_client:
blob_name = blob_client.blob_name
logger.info(f"Processing fact blob ({blob_name})")
downloader = await blob_client.download_blob()
# Deserialize
facted_model = FactedDocumentModel.model_validate_json(
await downloader.readall()
)
# Build indexed model
indexed_models = [
IndexedDocumentModel(
answer=fact.answer,
context=fact.context,
document_synthesis=facted_model.synthesis,
file_path=facted_model.file_path,
id=hash_text(
f"{facted_model.file_md5}-{facted_model.chunk_number + facted_model.page_number + i}"
), # Reproducible ID over the same raw document
question=fact.question,
)
for i, fact in enumerate(facted_model.facts)
]
# Index
destination_client = CONFIG.destination.instance()
await destination_client.index(indexed_models)
async def _use_blob_client(
name: str,
snapshot: Optional[str] = None,
) -> BlobClient:
"""
Create a BlobClient client capable of async I/O.
"""
BlobClient.from_blob_url
container_client = await _use_container_async_client()
return container_client.get_blob_client(
blob=name,
snapshot=snapshot, # type: ignore
)
async def _use_container_async_client() -> ContainerClient:
"""
Create a ContainerClient client capable of async I/O.
The client is created using the AzureWebJobsStorage env var. The client is cached for future use.
"""
global _container_client
if not isinstance(_container_client, ContainerClient):
connection_string: str = getenv("AzureWebJobsStorage") # type: ignore
_container_client = ContainerClient.from_connection_string(
conn_str=connection_string,
container_name=CONTAINER_NAME,
)
return _container_client