forked from onnx/onnx-tensorrt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RNNHelpers.cpp
194 lines (172 loc) · 9.05 KB
/
RNNHelpers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "RNNHelpers.hpp"
#include "LoopHelpers.hpp"
#include "onnx2trt_utils.hpp"
#include <array>
namespace onnx2trt
{
nvinfer1::ITensor* addRNNInput(IImporterContext* ctx, const ::ONNX_NAMESPACE::NodeProto& node, nvinfer1::ILoop* loop, std::vector<TensorOrWeights>& inputs, const std::string& direction)
{
// In the forward/reverse cases, we only use a single iterator. In the bidirectional case, a forward and reverse
// iterator must be concatenated.
// Input dimensions: [1, B, E]
nvinfer1::ITensor* iterationInput{nullptr};
nvinfer1::ITensor* input = &convertToTensor(inputs.at(0), ctx);
const int sequenceLenIndex = 4;
bool isRagged = inputs.size() > sequenceLenIndex && inputs.at(sequenceLenIndex);
if (direction == "forward")
{
iterationInput = unsqueezeTensor(ctx, node, *loop->addIterator(*input)->getOutput(0), std::vector<int>{0});
if (isRagged)
{
nvinfer1::ITensor* seqLens = &convertToTensor(inputs.at(sequenceLenIndex), ctx);
auto maxLen = getAxisLength(ctx, input, 0);
iterationInput = clearMissingSequenceElements(ctx, node, loop, seqLens, iterationInput, maxLen);
}
}
else if (direction == "reverse")
{
nvinfer1::IIteratorLayer* reverseIterator = loop->addIterator(*input);
reverseIterator->setReverse(true);
iterationInput = unsqueezeTensor(ctx, node, *reverseIterator->getOutput(0), std::vector<int>{0});
if (isRagged)
{
nvinfer1::ITensor* seqLens = &convertToTensor(inputs.at(sequenceLenIndex), ctx);
auto maxLen = getAxisLength(ctx, input, 0);
iterationInput = clearMissingSequenceElements(ctx, node, loop, seqLens, iterationInput, maxLen, true);
}
}
else if (direction == "bidirectional")
{
nvinfer1::IIteratorLayer* forward = loop->addIterator(*input);
nvinfer1::IIteratorLayer* reverse = loop->addIterator(*input);
reverse->setReverse(true);
auto forwardInput = unsqueezeTensor(ctx, node, *forward->getOutput(0), std::vector<int>{0});
auto reverseInput = unsqueezeTensor(ctx, node, *reverse->getOutput(0), std::vector<int>{0});
if (isRagged)
{
nvinfer1::ITensor* seqLens = &convertToTensor(inputs.at(sequenceLenIndex), ctx);
auto counter = addLoopCounter(ctx, loop);
auto maxLen = getAxisLength(ctx, input, 0);
forwardInput = clearMissingSequenceElements(ctx, node, loop, seqLens, forwardInput, maxLen, false, counter);
reverseInput = clearMissingSequenceElements(ctx, node, loop, seqLens, reverseInput, maxLen, true, counter);
}
// Stack on the 0th axis to create a (numDirections, B, E) tensor.
std::array<nvinfer1::ITensor*, 2> tensors{{forwardInput, reverseInput}};
nvinfer1::IConcatenationLayer* concat = ctx->network()->addConcatenation(tensors.data(), 2);
concat->setAxis(0);
iterationInput = concat->getOutput(0);
}
if (iterationInput)
{
LOG_VERBOSE("Input shape: " << iterationInput->getDimensions());
}
return iterationInput;
}
nvinfer1::ITensor* clearMissingSequenceElements(IImporterContext* ctx, const ::ONNX_NAMESPACE::NodeProto& node, nvinfer1::ILoop* loop,
nvinfer1::ITensor* seqLens, nvinfer1::ITensor* toMask, nvinfer1::ITensor* maxLen, bool reverse,
nvinfer1::ITensor* counter)
{
nvinfer1::ITensor* zero
= addConstantScalar(ctx, 0.f, ::ONNX_NAMESPACE::TensorProto::FLOAT, nvinfer1::Dims3(1, 1, 1))->getOutput(0);
nvinfer1::ITensor* seqMask = getRaggedMask(ctx, node, loop, seqLens, maxLen, reverse, counter);
return ctx->network()->addSelect(*seqMask, *toMask, *zero)->getOutput(0);
}
nvinfer1::ITensor* maskRNNHidden(IImporterContext* ctx, const ::ONNX_NAMESPACE::NodeProto& node, nvinfer1::ILoop* loop, nvinfer1::ITensor* seqLens,
nvinfer1::ITensor* prevH, nvinfer1::ITensor* Ht, nvinfer1::ITensor* maxLen, bool reverse,
nvinfer1::ITensor* counter)
{
// maxLen must be provided if reverse is true
// Forwards previous hidden state if invalid
nvinfer1::ITensor* valid = getRaggedMask(ctx, node, loop, seqLens, maxLen, reverse, counter);
return ctx->network()->addSelect(*valid, *Ht, *prevH)->getOutput(0);
}
nvinfer1::ITensor* maskBidirRNNHidden(IImporterContext* ctx, const ::ONNX_NAMESPACE::NodeProto& node, nvinfer1::ILoop* loop, nvinfer1::ITensor* seqLens,
nvinfer1::ITensor* maxLen, nvinfer1::ITensor* Ht1, nvinfer1::ITensor* Ht, nvinfer1::ITensor* singlePassShape)
{
// Splits hidden state into forward and backward states, masks each accordingly, then concatenates
nvinfer1::ITensor* forwardStart
= addConstant(ctx, std::vector<int32_t>{0, 0, 0}, ::ONNX_NAMESPACE::TensorProto::INT32, nvinfer1::Dims{1, 3})
->getOutput(0);
nvinfer1::ITensor* reverseStart
= addConstant(ctx, std::vector<int32_t>{1, 0, 0}, ::ONNX_NAMESPACE::TensorProto::INT32, nvinfer1::Dims{1, 3})
->getOutput(0);
nvinfer1::ISliceLayer* HtForwardLayer
= ctx->network()->addSlice(*Ht, nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{1, 1, 1});
HtForwardLayer->setInput(1, *forwardStart);
HtForwardLayer->setInput(2, *singlePassShape);
nvinfer1::ISliceLayer* HtBackwardLayer
= ctx->network()->addSlice(*Ht, nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{1, 1, 1});
HtBackwardLayer->setInput(1, *reverseStart);
HtBackwardLayer->setInput(2, *singlePassShape);
nvinfer1::ISliceLayer* Ht1ForwardLayer
= ctx->network()->addSlice(*Ht1, nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{1, 1, 1});
Ht1ForwardLayer->setInput(1, *forwardStart);
Ht1ForwardLayer->setInput(2, *singlePassShape);
nvinfer1::ISliceLayer* Ht1BackwardLayer
= ctx->network()->addSlice(*Ht1, nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{0, 0, 0}, nvinfer1::Dims3{1, 1, 1});
Ht1BackwardLayer->setInput(1, *reverseStart);
Ht1BackwardLayer->setInput(2, *singlePassShape);
auto forwardHt = HtForwardLayer->getOutput(0);
auto backwardHt = HtBackwardLayer->getOutput(0);
auto forwardHt1 = Ht1ForwardLayer->getOutput(0);
auto backwardHt1 = Ht1BackwardLayer->getOutput(0);
auto counter = addLoopCounter(ctx, loop, 0);
forwardHt = maskRNNHidden(ctx, node, loop, seqLens, forwardHt1, forwardHt, maxLen, false, counter);
backwardHt = maskRNNHidden(ctx, node, loop, seqLens, backwardHt1, backwardHt, maxLen, true, counter);
std::array<nvinfer1::ITensor*, 2> tensors{{forwardHt, backwardHt}};
nvinfer1::IConcatenationLayer* concat = ctx->network()->addConcatenation(tensors.data(), 2);
concat->setAxis(0);
return concat->getOutput(0);
}
nvinfer1::ITensor* getRaggedMask(IImporterContext* ctx, const ::ONNX_NAMESPACE::NodeProto& node, nvinfer1::ILoop* loop, nvinfer1::ITensor* seqLens,
nvinfer1::ITensor* maxLen, bool reverse, nvinfer1::ITensor* counter)
{
// Returns a bool tensor which is true where the elements are valid (within the sequence) and false when outside the
// sequence.
// maxLen must be provided if reverse is true
assert(!reverse || maxLen);
if (!counter)
{
counter = addLoopCounter(ctx, loop, 0);
}
// Create Mask
nvinfer1::ITensor* seqMask;
if (reverse)
{
counter
= ctx->network()
->addElementWise(*unsqueezeTensor(ctx, node, *maxLen, {0}), *counter, nvinfer1::ElementWiseOperation::kSUB)
->getOutput(0);
seqMask
= ctx->network()->addElementWise(*seqLens, *counter, nvinfer1::ElementWiseOperation::kLESS)->getOutput(0);
seqMask = ctx->network()->addUnary(*seqMask, nvinfer1::UnaryOperation::kNOT)->getOutput(0);
}
else
{
seqMask
= ctx->network()->addElementWise(*counter, *seqLens, nvinfer1::ElementWiseOperation::kLESS)->getOutput(0);
}
return unsqueezeTensor(ctx, node, *seqMask, std::vector<int>{0, 2});
}
} // namespace onnx2trt