forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
custom_class.h
295 lines (269 loc) · 12.5 KB
/
custom_class.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#pragma once
#include <ATen/core/stack.h>
#include <ATen/core/builtin_function.h>
#include <ATen/core/function_schema.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/op_registration/infer_schema.h>
#include <ATen/core/stack.h>
#include <c10/util/C++17.h>
#include <c10/util/Metaprogramming.h>
#include <c10/util/TypeList.h>
#include <c10/util/TypeTraits.h>
#include <torch/library.h>
#include <torch/custom_class_detail.h>
#include <iostream>
#include <sstream>
namespace torch {
/// This function is used in conjunction with `class_::def()` to register
/// a constructor for a given C++ class type. For example,
/// `torch::init<int, std::string>()` would register a two-argument constructor
/// taking an `int` and a `std::string` as argument.
template <class... Types>
detail::types<void, Types...> init() {
return detail::types<void, Types...>{};
}
/// Entry point for custom C++ class registration. To register a C++ class
/// in PyTorch, instantiate `torch::class_` with the desired class as the
/// template parameter. Typically, this instantiation should be done in
/// the initialization of a global variable, so that the class will be
/// made available on dynamic library loading without any additional API
/// calls needed. For example, to register a class named Foo, you might
/// create a global variable like so:
///
/// static auto register_foo = torch::class_<Foo>("myclasses", "Foo")
/// .def("myMethod", &Foo::myMethod)
/// .def("lambdaMethod", [](const c10::intrusive_ptr<Foo>& self) {
/// // Do something with `self`
/// });
///
/// In addition to registering the class, this registration also chains
/// `def()` calls to register methods. `myMethod()` is registered with
/// a pointer to the Foo class's `myMethod()` method. `lambdaMethod()`
/// is registered with a C++ lambda expression.
template <class CurClass>
class class_ {
static_assert(std::is_base_of<CustomClassHolder, CurClass>::value,
"torch::class_<T> requires T to inherit from CustomClassHolder");
public:
/// This constructor actually registers the class type.
/// String argument `namespaceName` is an identifier for the
/// namespace you would like this class to appear in.
/// String argument `className` is the name you would like to
/// see this class exposed as in Python and TorchScript. For example, if
/// you pass `foo` as the namespace name and `Bar` as the className, the
/// class will appear as `torch.classes.foo.Bar` in Python and TorchScript
explicit class_(const std::string& namespaceName, const std::string& className) {
detail::checkValidIdent(namespaceName, "Namespace name");
detail::checkValidIdent(className, "Class name");
qualClassName = std::string("__torch__.torch.classes.") + namespaceName + "." + className;
classTypePtr = at::ClassType::create(
c10::QualifiedName(qualClassName),
std::weak_ptr<jit::CompilationUnit>());
classTypePtr->addAttribute("capsule", at::CapsuleType::get());
c10::getCustomClassTypeMap().insert(
{std::type_index(typeid(c10::intrusive_ptr<CurClass>)), classTypePtr});
c10::getCustomClassTypeMap().insert(
{std::type_index(typeid(c10::tagged_capsule<CurClass>)), classTypePtr});
registerCustomClass(classTypePtr);
}
/// def() can be used in conjunction with `torch::init()` to register
/// a constructor for a given C++ class type. For example, passing
/// `torch::init<int, std::string>()` would register a two-argument constructor
/// taking an `int` and a `std::string` as argument.
template <typename... Types>
class_& def(detail::types<void, Types...>) { // Used in combination with
// torch::init<...>()
auto func = [](c10::tagged_capsule<CurClass> self, Types... args) {
auto classObj = c10::make_intrusive<CurClass>(args...);
auto object = self.ivalue.toObject();
object->setSlot(0, c10::IValue::make_capsule(std::move(classObj)));
};
defineMethod("__init__", std::move(func));
return *this;
}
/// This is the normal method registration API. `name` is the name that
/// the method will be made accessible by in Python and TorchScript.
/// `f` is a callable object that defines the method. Typically `f`
/// will either be a pointer to a method on `CurClass`, or a lambda
/// expression that takes a `c10::intrusive_ptr<CurClass>` as the first
/// argument (emulating a `this` argument in a C++ method.)
///
/// Examples:
///
/// // Exposes method `foo` on C++ class `Foo` as `call_foo()` in
/// // Python and TorchScript
/// .def("call_foo", &Foo::foo)
///
/// // Exposes the given lambda expression as method `call_lambda()`
/// // in Python and TorchScript.
/// .def("call_lambda", [](const c10::intrusive_ptr<Foo>& self) {
/// // do something
/// })
template <typename Func>
class_& def(std::string name, Func f) {
auto wrapped_f = detail::wrap_func<CurClass, Func>(std::move(f));
defineMethod(std::move(name), std::move(wrapped_f));
return *this;
}
/// This is an unsafe method registration API added for adding custom JIT backend support via custom
/// C++ classes. It is not for general purpose use.
class_& _def_unboxed(std::string name, std::function<void(jit::Stack&)> func, c10::FunctionSchema schema) {
auto qualMethodName = qualClassName + "." + name;
auto method = std::make_unique<jit::BuiltinOpFunction>(
qualMethodName, std::move(schema), std::move(func));
classTypePtr->addMethod(method.get());
registerCustomClassMethod(std::move(method));
return *this;
}
/// def_pickle() is used to define exactly what state gets serialized
/// or deserialized for a given instance of a custom C++ class in
/// Python or TorchScript. This protocol is equivalent to the Pickle
/// concept of `__getstate__` and `__setstate__` from Python
/// (https://docs.python.org/2/library/pickle.html#object.__getstate__)
///
/// Currently, both the `get_state` and `set_state` callables must be
/// C++ lambda expressions. They should have the following signatures,
/// where `CurClass` is the class you're registering and `T` is some object
/// that encapsulates the state of the object.
///
/// __getstate__(intrusive_ptr<CurClass>) -> T
/// __setstate__(T) -> intrusive_ptr<CurClass>
///
/// `T` must be an object that is convertable to IValue by the same rules
/// for custom op/method registration.
///
/// Example:
///
/// .def_pickle(
/// // __getstate__
/// [](const c10::intrusive_ptr<MyStackClass<std::string>>& self) {
/// return self->stack_;
/// },
/// [](std::vector<std::string> state) { // __setstate__
/// return c10::make_intrusive<MyStackClass<std::string>>(
/// std::vector<std::string>{"i", "was", "deserialized"});
/// })
template <typename GetStateFn, typename SetStateFn>
class_& def_pickle(GetStateFn&& get_state, SetStateFn&& set_state) {
static_assert(
c10::guts::is_stateless_lambda<std::decay_t<GetStateFn>>::value &&
c10::guts::is_stateless_lambda<std::decay_t<SetStateFn>>::value,
"def_pickle() currently only supports lambdas as "
"__getstate__ and __setstate__ arguments.");
def("__getstate__", std::forward<GetStateFn>(get_state));
// __setstate__ needs to be registered with some custom handling:
// We need to wrap the invocation of of the user-provided function
// such that we take the return value (i.e. c10::intrusive_ptr<CurrClass>)
// and assign it to the `capsule` attribute.
using SetStateTraits =
c10::guts::infer_function_traits_t<std::decay_t<SetStateFn>>;
using SetStateArg = typename c10::guts::typelist::head_t<
typename SetStateTraits::parameter_types>;
auto setstate_wrapper = [set_state = std::move(set_state)](
c10::tagged_capsule<CurClass> self,
SetStateArg&& arg) {
c10::intrusive_ptr<CurClass> classObj =
at::guts::invoke(set_state, std::forward<SetStateArg>(arg));
auto object = self.ivalue.toObject();
object->setSlot(0, c10::IValue::make_capsule(classObj));
};
defineMethod(
"__setstate__",
detail::wrap_func<CurClass, decltype(setstate_wrapper)>(
std::move(setstate_wrapper)));
// type validation
auto getstate_schema = classTypePtr->getMethod("__getstate__").getSchema();
auto format_getstate_schema = [&getstate_schema]() {
std::stringstream ss;
ss << getstate_schema;
return ss.str();
};
TORCH_CHECK(
getstate_schema.arguments().size() == 1,
"__getstate__ should take exactly one argument: self. Got: ",
format_getstate_schema());
auto first_arg_type = getstate_schema.arguments().at(0).type();
TORCH_CHECK(
*first_arg_type == *classTypePtr,
"self argument of __getstate__ must be the custom class type. Got ",
first_arg_type->repr_str());
TORCH_CHECK(
getstate_schema.returns().size() == 1,
"__getstate__ should return exactly one value for serialization. Got: ",
format_getstate_schema());
auto ser_type = getstate_schema.returns().at(0).type();
auto setstate_schema = classTypePtr->getMethod("__setstate__").getSchema();
auto arg_type = setstate_schema.arguments().at(1).type();
TORCH_CHECK(
(*arg_type == *ser_type),
"__setstate__'s argument should be the same type as the "
"return value of __getstate__. Got ",
arg_type->repr_str(),
" but expected ",
ser_type->repr_str());
return *this;
}
private:
template <typename Func>
void defineMethod(std::string name, Func func) {
auto qualMethodName = qualClassName + "." + name;
auto schema = c10::inferFunctionSchemaSingleReturn<Func>(std::move(name), "");
auto wrapped_func = [func = std::move(func)](jit::Stack& stack) mutable -> void {
// TODO: we need to figure out how to profile calls to custom functions
// like this! Currently can't do it because the profiler stuff is in
// libtorch and not ATen
using RetType =
typename c10::guts::infer_function_traits_t<Func>::return_type;
detail::BoxedProxy<RetType, Func>()(stack, func);
};
auto method = std::make_unique<jit::BuiltinOpFunction>(
qualMethodName, std::move(schema), std::move(wrapped_func));
// Register the method here to keep the Method alive.
// ClassTypes do not hold ownership of their methods (normally it
// those are held by the CompilationUnit), so we need a proxy for
// that behavior here.
classTypePtr->addMethod(method.get());
registerCustomClassMethod(std::move(method));
}
std::string qualClassName;
at::ClassTypePtr classTypePtr;
};
/// make_custom_class() is a convenient way to create an instance of a registered
/// custom class and wrap it in an IValue, for example when you want to pass the
/// object to TorchScript. Its syntax is equivalent to APIs like `std::make_shared<>`
/// or `c10::make_intrusive<>`.
///
/// For example, if you have a custom C++ class that can be constructed from an `int`
/// and `std::string`, you might use this API like so:
///
/// IValue custom_class_iv = torch::make_custom_class<MyClass>(3, "foobarbaz");
template <typename CurClass, typename... CtorArgs>
c10::IValue make_custom_class(CtorArgs&&... args) {
if (!c10::isCustomClassRegistered<c10::intrusive_ptr<CurClass>>()) {
throw c10::Error(
"Trying to instantiate a class that isn't a registered custom class.",
"");
}
auto userClassInstance = c10::make_intrusive<CurClass>(std::forward<CtorArgs>(args)...);
return c10::IValue(std::move(userClassInstance));
}
// jit namespace for backward-compatibility
// We previously defined everything in torch::jit but moved it out to
// better reflect that these features are not limited only to TorchScript
namespace jit {
using ::torch::getCustomClass;
using ::torch::isCustomClass;
using ::torch::init;
using ::torch::class_;
} // namespace jit
template <class CurClass>
inline class_<CurClass> Library::class_(const std::string& className) {
TORCH_CHECK(kind_ == DEF || kind_ == FRAGMENT,
"class_(\"", className, "\"): Cannot define a class inside of a TORCH_LIBRARY_IMPL block. "
"All class_()s should be placed in the (unique) TORCH_LIBRARY block for their namespace. "
"(Error occurred at ", file_, ":", line_, ")");
TORCH_INTERNAL_ASSERT(ns_.has_value(), file_, ":", line_);
return torch::class_<CurClass>(*ns_, className);
}
}