forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IndexingUtils.h
128 lines (114 loc) · 4.25 KB
/
IndexingUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#include <ATen/ExpandUtils.h>
#include <ATen/native/TensorIterator.h>
namespace at { namespace native {
[[noreturn]]
static void invalid_mask(const Tensor & self, int64_t idx, const Tensor & mask, int64_t maskIdx) {
TORCH_CHECK_INDEX(false, "The shape of the mask ", mask.sizes(), " at index ", maskIdx,
" does not match the shape of the indexed tensor ", self.sizes(), " at index ", idx);
}
static std::vector<Tensor> expandTensors(const Tensor & self, TensorList indices) {
// If indices come in as ByteTensor or BoolTensor (masks), expand them into the equivalent indexing by LongTensors
std::vector<Tensor> result;
for (const auto & index : indices) {
if (index.scalar_type() == kByte || index.scalar_type() == kBool) {
if (index.scalar_type() == kByte) {
TORCH_WARN("indexing with dtype torch.uint8 is now deprecated," \
" please use a dtype torch.bool instead.");
}
// The sizes of the ByteTensor mask or bool tensor must match the sizes of the
// corresponding dimensions in self
for (int64_t j = 0; j < index.dim(); j++) {
int64_t srcIdx = result.size() + j;
if (index.size(j) != self.size(srcIdx)) {
invalid_mask(self, srcIdx, index, j);
}
}
// Replace with nonzeros
auto nonzero = index.nonzero();
for (int64_t j = 0; j < index.dim(); j++) {
result.emplace_back(nonzero.select(1, j));
}
} else {
result.emplace_back(index);
}
}
return result;
}
static void checkIndexTensorTypes(TensorList indices) {
for (auto& tensor : indices) {
if (tensor.defined()) {
auto scalarType = tensor.scalar_type();
if (scalarType != kLong && scalarType != kByte && scalarType != kBool) {
TORCH_CHECK_INDEX(false, "tensors used as indices must be long, byte or bool tensors");
}
}
}
}
static bool hasContiguousSubspace(TensorList tl) {
// true if all the non-null tensors are adjacent
auto isDefined = [](const Tensor & tensor){ return tensor.defined(); };
auto isNull = [](const Tensor & tensor){ return !tensor.defined(); };
auto start = std::find_if(tl.begin(), tl.end(), isDefined);
auto stop = std::find_if(tl.rbegin(), tl.rend(), isDefined);
auto it = std::find_if(start, stop.base(), isNull);
return it == stop.base();
}
// Transposes the tensor and indices together so that all the non-null indices
// index the first k dimensions of the tensor. Returns the transposed tensor
// and the reordered indices. For example:
// transposeToFront(tensor, {nullptr, a, nullptr, b})
// returns
// tensor.permute([1, 3, 0, 2]), {a, b, nullptr, nullptr}
static std::tuple<Tensor, std::vector<Tensor>>
transposeToFront(Tensor self, TensorList indices) {
std::vector<int64_t> dims;
std::vector<Tensor> transposedIndices;
dims.reserve(self.dim());
for (auto i = decltype(self.dim()){0}; i < self.dim(); i++) {
if (indices[i].defined()) {
dims.push_back(i);
transposedIndices.emplace_back(indices[i]);
}
}
for (auto i = decltype(self.dim()){0}; i < self.dim(); i++) {
if (!indices[i].defined()) {
dims.push_back(i);
transposedIndices.emplace_back();
}
}
return std::make_tuple(self.permute(dims), std::move(transposedIndices));
}
inline std::tuple<Tensor, std::vector<Tensor>, std::vector<int64_t>>
transposeToFrontAndInvPerm(Tensor self, TensorList indices) {
std::vector<int64_t> dims;
std::vector<int64_t> invPerm;
std::vector<Tensor> transposedIndices;
dims.reserve(self.dim());
invPerm.resize(self.dim());
for (auto i = decltype(self.dim()){0}; i < self.dim(); i++) {
if (indices[i].defined()) {
dims.push_back(i);
transposedIndices.emplace_back(indices[i]);
}
}
for (auto i = decltype(self.dim()){0}; i < self.dim(); i++) {
if (!indices[i].defined()) {
dims.push_back(i);
transposedIndices.emplace_back();
}
}
for (auto i = decltype(self.dim()){0}; i < self.dim(); i++) {
invPerm[dims[i]] = i;
}
return std::make_tuple(self.permute(dims), std::move(transposedIndices), std::move(invPerm));
}
struct AdvancedIndex {
AdvancedIndex(const Tensor& src, TensorList indices);
Tensor src;
std::vector<Tensor> indices;
DimVector indexed_sizes;
DimVector indexed_strides;
int64_t dims_before;
int64_t dims_after;
};
}}