forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Embedding.cpp
165 lines (136 loc) · 5.15 KB
/
Embedding.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <ATen/TensorUtils.h>
#include <ATen/NativeFunctions.h>
#include <cstring>
#include <memory>
#include <sstream>
#include <vector>
namespace at { namespace native {
Tensor embedding(const Tensor & weight, const Tensor & indices,
int64_t padding_idx, bool scale_grad_by_freq, bool sparse) {
auto indices_arg = TensorArg(indices, "indices", 1);
checkScalarType("embedding", indices_arg, kLong);
// TODO: use tensor.index() after improving perf
if (indices.dim() == 1) {
return weight.index_select(0, indices);
}
auto size = indices.sizes().vec();
for (auto d : weight.sizes().slice(1)) {
size.push_back(d);
}
return weight.index_select(0, indices.reshape(-1)).view(size);
}
Tensor embedding_backward(
const Tensor & grad, const Tensor & indices, int64_t num_weights,
int64_t padding_idx, bool scale_grad_by_freq, bool sparse) {
if (sparse) {
return at::embedding_sparse_backward(
grad, indices, num_weights, padding_idx, scale_grad_by_freq);
} else {
return at::embedding_dense_backward(
grad, indices, num_weights, padding_idx, scale_grad_by_freq);
}
}
Tensor embedding_sparse_backward(
const Tensor & grad_, const Tensor & indices_, int64_t num_weights,
int64_t padding_idx, bool scale_grad_by_freq) {
auto indices_arg = TensorArg(indices_, "indices", 2);
checkScalarType("embedding_backward", indices_arg, kLong);
// TODO: implement scale_grad_by_freq
if (scale_grad_by_freq) {
AT_ERROR(
"embedding_backward: scale_grad_by_freq not supported with sparse gradients");
}
Tensor indices = indices_;
Tensor grad = grad_;
if (padding_idx != -1) {
auto c = indices != padding_idx;
indices = indices.index(c);
grad = grad.index(c);
}
int64_t num_features = grad_.size(-1);
auto weight_size = std::array<int64_t, 2>{{ num_weights, num_features }};
auto dense_options = grad.options();
// check if all our grad come from padding_idx
if (grad.numel() == 0) {
return at::_sparse_coo_tensor_unsafe(at::empty({1, 0}, indices_.options()),
at::empty({0, num_features}, dense_options),
weight_size);
}
auto index = indices.reshape({1, -1});
auto values = grad.reshape({-1, num_features});
return at::_sparse_coo_tensor_unsafe(index, values, weight_size);
}
Tensor embedding_dense_backward_cpu(
const Tensor & grad_, const Tensor & indices, int64_t num_weights,
int64_t padding_idx, bool scale_grad_by_freq) {
auto indices_arg = TensorArg(indices, "indices", 2);
checkScalarType("embedding_backward", indices_arg, kLong);
auto indices_contig = indices.contiguous();
auto indices_data = indices_contig.data_ptr<int64_t>();
int64_t numel = indices.numel();
std::unique_ptr<int64_t[]> counts;
if (scale_grad_by_freq) {
counts.reset(new int64_t[num_weights]);
for (int i = 0; i < numel; i++) {
counts[indices_data[i]] = 0;
}
for (int i = 0; i < numel; i++) {
counts[indices_data[i]]++;
}
}
auto grad = grad_.contiguous().view({numel, grad_.size(-1)});
auto grad_weight = at::zeros({num_weights, grad_.size(-1)}, grad_.options());
auto parallel_section = [&](int64_t start, int64_t end) {
for (int64_t i = 0; i < numel; i++) {
if (indices_data[i] != padding_idx) {
int64_t k = indices_data[i];
if (k >= start && k < end) {
double scale = 1.0;
if (scale_grad_by_freq) {
scale /= counts[k];
}
grad_weight[k].add_(grad[i], scale);
}
}
}
};
if (numel > 1000) {
// The strategy is to parallelize over sections of the vocabulary, so that
// thread 1 handles updates to gradWeight[0..nVocab/nThreads]. Every thread
// has to traverse the entire input, but the dominating factor is the axpy
// BLAS call.
at::parallel_for(0, num_weights, 0, parallel_section);
} else {
parallel_section(0, num_weights);
}
return grad_weight;
}
Tensor & embedding_renorm_cpu_(
Tensor & self, const Tensor & indices, double max_norm, double norm_type) {
auto self_arg = TensorArg(self, "self", 1);
auto indices_arg = TensorArg(indices, "indices", 2);
checkDim("embedding_renorm_", self_arg, 2);
checkScalarType("embedding_renorm_", indices_arg, kLong);
auto indices_contig = indices.contiguous();
auto num_indices = indices.numel();
auto data_ptr = indices_contig.data_ptr<int64_t>();
auto sorted_indices = std::vector<int64_t>(data_ptr, data_ptr + num_indices);
std::sort(sorted_indices.begin(), sorted_indices.end(), std::less<int64_t>());
// Note that we cannot use at::parallel_for here because we perform operations on
// Tensor inside the loop. See github.com/pytorch/pytorch/issues/28370 for more details.
for (auto i = 0; i < num_indices; i++) {
if (i > 0 && sorted_indices[i] == sorted_indices[i - 1]) {
continue;
}
auto row = self[sorted_indices[i]];
auto norm = row.norm(norm_type).item<double>();
if (norm > max_norm) {
auto scale = max_norm / (norm + 1e-7);
row *= scale;
}
}
return self;
}
}} // namespace at::native