-
Notifications
You must be signed in to change notification settings - Fork 1
/
areaGetter.py
330 lines (314 loc) · 10.8 KB
/
areaGetter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 19 13:55:39 2021
@author:
"""
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import cv2
from matplotlib.backends.backend_pdf import PdfPages
import fitz
from sklearn.cluster import KMeans
import scipy.signal as sci
# from dataclasses import dataclass
# from datetime import datetime
import math
import re
class p(object):
def __init__(self,name):
self.name = name
def __repr__(self):
return self.name
def __str__(self):
return self.name
brainmap = {
'Fpz':'Prefrontal Cortex',
'Fp1':'Prefrontal Cortex',
'Fp2':'Prefrontal Cortex',
'AF7':'Prefrontal Cortex',
'AF3':'Prefrontal Cortex',
'AFz':'Prefrontal Cortex',
'AF4':'Prefrontal Cortex',
'AF8':'Prefrontal Cortex',
'F7' :'Premotor Cortex',
'F5':'Premotor Cortex',
'F3':'Premotor Cortex',
'F1':'Premotor Cortex',
'Fz':'Premotor Cortex',
'F2':'Premotor Cortex',
'F4':'Premotor Cortex',
'F6':'Premotor Cortex',
'F8':'Premotor Cortex',
'FT9':'Auditory Association Area',
'FT7':'Brocas Area',
'FC5':'Primary Motor Cortex',
'FC3':'Primary Motor Cortex',
'FC1':'Primary Motor Cortex',
'FCz':'Primary Motor Cortex',
'FC2':'Primary Motor Cortex',
'FC4':'Primary Motor Cortex',
'FC6':'Primary Motor Cortex',
'FT8': 'Brocas Area',
'FT10':'Auditory Association Area',
'T7':'Auditory Cortex',
'C5':'Primary Sensory Cortex',
'C3':'Primary Sensory Cortex',
'C1':'Primary Sensory Cortex',
'Cz':'Primary Sensory Cortex',
'C2':'Primary Sensory Cortex',
'C4':'Primary Sensory Cortex',
'C6':'Primary Sensory Cortex',
'T8':'Auditory Cortex',
'TP7':'Wernickes Area',
'CP5':'Somatic Sensory Association Area',
'CP3':'Somatic Sensory Association Area',
'CP1':'Somatic Sensory Association Area',
'CPz':'Somatic Sensory Association Area',
'CP2':'Somatic Sensory Association Area',
'CP4':'Somatic Sensory Association Area',
'CP6':'Somatic Sensory Association Area',
'TP8':'Wernickes Area',
'TP10':'Wernickes Area',
'P7':'Somatic Sensory Association Area',
'P5':'Somatic Sensory Association Area',
'P3':'Somatic Sensory Association Area',
'P1':'Somatic Sensory Association Area',
'Pz':'Somatic Sensory Association Area',
'P2':'Somatic Sensory Association Area',
'P4':'Somatic Sensory Association Area',
'P6':'Somatic Sensory Association Area',
'P8':'Somatic Sensory Association Area',
'PO7':'Visual Association Area',
'PO3':'Visual Association Area',
'POz':'Visual Association Area',
'PO4':'Visual Association Area',
'PO8':'Visual Association Area',
'O1':'Visual Cortex',
'Oz':'Visual Cortex',
'O2':'Visual Cortex',
'REF':'NAN',
'GND':'NAN'
}
broadmannmapping ={
'Fpz':'ba10L',
'Fp1':'ba10L',
'Fp2':'ba10R',
'AF7':'ba46L',
'AF3':'ba09L',
'AFz':'ba09L',
'AF4':'ba09R',
'AF8':'ba46R',
'F7' :'ba47L',
'F5':'ba46L',
'F3':'ba08L',
'F1':'ba08L',
'Fz':'baO8L',
'F2':'ba08R',
'F4':'ba08R',
'F6':'ba46R',
'F8':'ba45R',
'FT9':'ba20L',
'FT7':'ba47L',
'FC5':'BROCLA',
'FC3':'ba06L',
'FC1':'ba06L',
'FCz':'ba06R',
'FC2':'ba06R',
'FC4':'ba06R',
'FC6':'ba44R',
'FT8': 'ba47R',
'FT10':'ba20R',
'T7':'ba42L',
'C5':'ba42L',
'C3':'ba02L',
'C1':'ba05L',
'Cz':'ba05L',
'C2':'ba05R',
'C4':'ba01R',
'C6':'ba41R',
'T8':'ba21R',
'TP7':'ba21L',
'CP5':'ba40L',
'CP3':'ba02L',
'CP1':'ba05L',
'CPz':'ba05R',
'CP2':'ba05R',
'CP4':'ba40R',
'CP6':'ba40R',
'TP8':'ba21R',
'TP10':'ba21R',
'P7':'ba37L',
'P5':'ba39L',
'P3':'ba39L',
'P1':'ba07L',
'Pz':'ba07R',
'P2':'ba07R',
'P4':'ba39R',
'P6':'ba39R',
'P8':'ba37R',
'PO7':'ba19L',
'PO3':'ba19L',
'POz':'ba17L',
'PO4':'ba19R',
'PO8':'ba19R',
'O1':'ba19L',
'Oz':'ba17R',
'O2':'ba18R',
'REF':'NAN',
'GND':'NAN'
}
broadmanntoarea ={
'ba01':'Primary Sensory Cortex',
'ba02':'Primary Sensory Cortex',
'ba03':'Primary Sensory Cortex',
'ba04':'Primary Motor Cortex',
'ba05':'Somatic Sensory Association Area',
'ba06':'Premotor Cortex',
'ba07':'Somatic Sensory Association Area',
'ba08':'Prefrontal Cortex',
'ba09':'Prefrontal Cortex',
'ba10':'Prefrontal Cortex',
'ba11':'Prefrontal Cortex',
'ba12':'Prefrontal Cortex',
'ba17':'Visual Cortex',
'ba18':'Visual Cortex',
'ba19':'Visual Association Area',
'ba20':'Temporal',
'ba21':'Temporal',
'ba22':'Wernickes Area',
'ba37':'Temporal',
'ba38':'Temporal',
'ba39':'Wernickes Area',
'ba40':'Wernickes Area',
'ba41':'Auditory Cortex',
'ba42':'Auditory Cortex',
'ba43':'Frontal Cortex',
'ba44':'Frontal Cortex',
'BROCLA':'Brocas Area',
'ba45':'Frontal Cortex',
'ba46':'Frontal Cortex',
'ba47':'Frontal Cortex',
}
areamap = {
'Prefrontal Cortex':'Involved in decision making and abstract thought',
'Premotor Cortex':'Involved in planning of movement',
'Brocas Area':'Responsible for speech production',
'Auditory Cortex':'Processes sound',
'Auditory Association Area':'Responsible for high level processing of sound, such as memory',
'Primary Motor Cortex':'Executes Movement',
'Primary Sensory Cortex':'Main receptive area for the senses, especially touch',
'Wernickes Area':'Involved in understanding speech',
'Somatic Sensory Association Area':'Involved in high level touch interpretation',
'Visual Association Area':'Involved in high level processing of visual stimuli',
'Visual Cortex':'Processes visual stimuli'
}
#Defines active areas as those where their values normalized compared to all sensors on that band
#are greater than or equal to .8. Currently only actually examines first row
#in each time range, as per the heatmaps functionality
def GetActiveAreas(first,last,band,data):
data = data.iloc[:,10:].dropna()
if band == 'theta':
data = data.iloc[first:last, 0:64]
elif band == 'alpha':
data = data.iloc[first:last, 64:128]
elif band =='beta':
data = data.iloc[first:last, 128:]
min = data.min()
max = data.max()
normalized = (data- min)/(max-min)
columns = []
norm_vals = []
for i in range(normalized.shape[1]):
if normalized.iloc[0,i]>= .8:
columns.append(normalized.columns[i])
norm_vals.append(normalized.iloc[0,i])
# areas = FindAreas(columns)
norm_vals = ['{:.3f}'.format(item) for item in norm_vals]
b_areas = []
columns_stripped = []
bmap = []
expl = []
for string in columns:
b_areas.append(broadmannmapping[string.split('_')[0]])
columns_stripped.append(string.split('_')[0])
bmap.append(brainmap[string.split('_')[0]])
for item in bmap:
expl.append(areamap[item])
# df = pd.DataFrame({'Electrode':columns_stripped,
# 'Activity value':norm_vals,
# 'Broadmann label': b_areas,
# 'Mapped Broadmann Area':bmap,
# 'Explanation':expl}).set_index(['Electrode'])
# df = df.sort_values(by=['Activity value'],ascending=False).iloc[:7,:]
# return df
return columns_stripped, norm_vals, b_areas, bmap, expl
def FindAreas(columns):
areamark = [False,False,False,False,False,False,False,False,False,False,False]
areas = []
for sensor in columns:
if brainmap[sensor.split('_')[0]] == 'Prefrontal Cortex':
if areamark[0]== False:
areas.append('Prefrontal Cortex')
areas.append(areamap['Prefrontal Cortex'])
areamark[0]= True
elif brainmap[sensor.split('_')[0]] == 'Premotor Cortex':
if areamark[1]== False:
areas.append('Premotor Cortex')
areas.append(areamap['Premotor Cortex'])
areamark[1]= True
elif brainmap[sensor.split('_')[0]] == 'Auditory Association Area':
if areamark[2]== False:
areas.append('Auditory Association Area')
areas.append(areamap['Auditory Association Area'])
areamark[2]= True
elif brainmap[sensor.split('_')[0]] == 'Brocas Area':
if areamark[3]== False:
areas.append('Brocas Area')
areas.append(areamap['Brocas Area'])
areamark[3]= True
elif brainmap[sensor.split('_')[0]] == 'Primary Motor Cortex':
if areamark[4]== False:
areas.append('Primary Motor Cortex')
areas.append(areamap['Primary Motor Cortex'])
areamark[4]= True
elif brainmap[sensor.split('_')[0]] == 'Auditory Cortex':
if areamark[5]== False:
areas.append('Auditory Cortex')
areas.append(areamap['Auditory Cortex'])
areamark[5]= True
elif brainmap[sensor.split('_')[0]] == 'Primary Sensory Cortex':
if areamark[6]== False:
areas.append('Primary Sensory Cortex')
areas.append(areamap['Primary Sensory Cortex'])
areamark[6]= True
elif brainmap[sensor.split('_')[0]] == 'Wernickes Area':
if areamark[7]== False:
areas.append('Wernickes Area')
areas.append(areamap['Wernickes Area'])
areamark[7]= True
elif brainmap[sensor.split('_')[0]] == 'Somatic Sensory Association Area':
if areamark[8]== False:
areas.append('Somatic Sensory Association Area')
areas.append(areamap['Somatic Sensory Association Area'])
areamark[8]= True
elif brainmap[sensor.split('_')[0]] == 'Visual Association Area':
if areamark[9]== False:
areas.append('Visual Association Area')
areas.append(areamap['Visual Association Area'])
areamark[9]= True
elif brainmap[sensor.split('_')[0]] == 'Visual Cortex':
if areamark[10]== False:
areas.append('Visual Cortex')
areas.append(areamap['Visual Cortex'])
areamark[10]= True
return areas
#This function calls GetActiveAreas for all bands and time ranges, and puts the output in a text file.
# def CreateText(times,data):
# File = open("EEGMARKS.txt","w")
# for rang in times:
# File.write("Timeframe: " + str(rang.start) + " to "+ str(rang.end) + "\n")
# File.write("Theta: "+ str(GetActiveAreas(rang,'theta',data))+ "\n")
# File.write("Alpha: "+ str(GetActiveAreas(rang,'alpha',data))+ "\n")
# File.write("Beta: "+ str(GetActiveAreas(rang,'beta',data))+"\n" + "\n")
# File.close()