-
Notifications
You must be signed in to change notification settings - Fork 21
/
xcrypt.c
1274 lines (1099 loc) · 42.6 KB
/
xcrypt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* des.c --- DES and Triple-DES encryption/decryption Algorithm
* Copyright (C) 1998, 1999, 2001, 2002, 2003, 2004, 2005, 2006, 2007
* Free Software Foundation, Inc.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2, or (at your
* option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this file; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* ----------------------------------------------------------------------
* Functions to compute MD4 message digest of files or memory blocks.
* according to the definition of MD4 in RFC 1320 from April 1992. Copyright
* (C) 1995,1996,1997,1999,2000,2001,2002,2003,2005,2006 Free Software
* Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2, or (at your option) any
* later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <sys/types.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <stdint.h>
#include "xcrypt.h"
#include "swap.h"
#define SWAP(n) U32LE(n)
#define BLOCKSIZE 4096
#if BLOCKSIZE % 64 != 0
# error "invalid BLOCKSIZE"
#endif
/*
* To check alignment gcc has an appropriate operator. Other compilers don't.
*/
# if __GNUC__ >= 2
# define UNALIGNED_P(p) (((uintptr_t) p) % __alignof__ (uint32_t) != 0)
# else
# define alignof(type) offsetof (struct { char c; type x; }, x)
# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
# endif
# define MD4_DIGEST_SIZE 16
/* MD4 round constants */
#define K1 0x5a827999
#define K2 0x6ed9eba1
/* Round functions. */
#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
#define R1(a,b,c,d,k,s) a=rol(a+F(b,c,d)+x[k],s);
#define R2(a,b,c,d,k,s) a=rol(a+G(b,c,d)+x[k]+K1,s);
#define R3(a,b,c,d,k,s) a=rol(a+H(b,c,d)+x[k]+K2,s);
/* This array contains the bytes used to pad the buffer to the next
64-byte boundary. (RFC 1320, 3.1: Step 1) */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
/*
* The s-box values are permuted according to the 'primitive function P'
* and are rotated one bit to the left.
*/
static const uint32_t sbox1[64] = {
0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404,
0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400,
0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400,
0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404,
0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404,
0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000,
0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000,
0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404,
0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404,
0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000,
0x00010004, 0x00010400, 0x00000000, 0x01010004
};
static const uint32_t sbox2[64] = {
0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020,
0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000,
0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020,
0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000,
0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000,
0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000,
0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000,
0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000,
0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020,
0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020,
0x80000000, 0x80100020, 0x80108020, 0x00108000
};
static const uint32_t sbox3[64] = {
0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000,
0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000,
0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008,
0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208,
0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208,
0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208,
0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008,
0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008,
0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208,
0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000,
0x00020208, 0x00000008, 0x08020008, 0x00020200
};
static const uint32_t sbox4[64] = {
0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081,
0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000,
0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080,
0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080,
0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080,
0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001,
0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002000, 0x00802080
};
static const uint32_t sbox5[64] = {
0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100,
0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100,
0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000,
0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100,
0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000,
0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000,
0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000,
0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000,
0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000,
0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000,
0x00000000, 0x40080000, 0x02080100, 0x40000100
};
static const uint32_t sbox6[64] = {
0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010,
0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010,
0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010,
0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010,
0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000,
0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000,
0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000,
0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000,
0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000,
0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000,
0x20404000, 0x20000000, 0x00400010, 0x20004010
};
static const uint32_t sbox7[64] = {
0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802,
0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002,
0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802,
0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002,
0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002,
0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802,
0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000,
0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800,
0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000,
0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800,
0x04000002, 0x04000800, 0x00000800, 0x00200002
};
static const uint32_t sbox8[64] = {
0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040,
0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000,
0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040,
0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000,
0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000,
0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000,
0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040,
0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040,
0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000,
0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040,
0x00001040, 0x00040040, 0x10000000, 0x10041000
};
/*
* These two tables are part of the 'permuted choice 1' function.
* In this implementation several speed improvements are done.
*/
static const uint32_t leftkey_swap[16] = {
0x00000000, 0x00000001, 0x00000100, 0x00000101,
0x00010000, 0x00010001, 0x00010100, 0x00010101,
0x01000000, 0x01000001, 0x01000100, 0x01000101,
0x01010000, 0x01010001, 0x01010100, 0x01010101
};
static const uint32_t rightkey_swap[16] = {
0x00000000, 0x01000000, 0x00010000, 0x01010000,
0x00000100, 0x01000100, 0x00010100, 0x01010100,
0x00000001, 0x01000001, 0x00010001, 0x01010001,
0x00000101, 0x01000101, 0x00010101, 0x01010101,
};
/*
* Numbers of left shifts per round for encryption subkeys. To
* calculate the decryption subkeys we just reverse the ordering of
* the calculated encryption subkeys, so there is no need for a
* decryption rotate tab.
*/
static const unsigned char encrypt_rotate_tab[16] = {
1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
};
/*
* Table with weak DES keys sorted in ascending order. In DES there
* are 64 known keys which are weak. They are weak because they
* produce only one, two or four different subkeys in the subkey
* scheduling process. The keys in this table have all their parity
* bits cleared.
*/
static const unsigned char weak_keys[64][8] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*w */
{0x00, 0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e},
{0x00, 0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0},
{0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe},
{0x00, 0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e}, /*sw */
{0x00, 0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00},
{0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe},
{0x00, 0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0},
{0x00, 0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0}, /*sw */
{0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe},
{0x00, 0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00},
{0x00, 0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e},
{0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe}, /*sw */
{0x00, 0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0},
{0x00, 0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e},
{0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00},
{0x1e, 0x00, 0x00, 0x1e, 0x0e, 0x00, 0x00, 0x0e},
{0x1e, 0x00, 0x1e, 0x00, 0x0e, 0x00, 0x0e, 0x00}, /*sw */
{0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0, 0xfe},
{0x1e, 0x00, 0xfe, 0xe0, 0x0e, 0x00, 0xfe, 0xf0},
{0x1e, 0x1e, 0x00, 0x00, 0x0e, 0x0e, 0x00, 0x00},
{0x1e, 0x1e, 0x1e, 0x1e, 0x0e, 0x0e, 0x0e, 0x0e}, /*w */
{0x1e, 0x1e, 0xe0, 0xe0, 0x0e, 0x0e, 0xf0, 0xf0},
{0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe, 0xfe},
{0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00, 0xfe},
{0x1e, 0xe0, 0x1e, 0xe0, 0x0e, 0xf0, 0x0e, 0xf0}, /*sw */
{0x1e, 0xe0, 0xe0, 0x1e, 0x0e, 0xf0, 0xf0, 0x0e},
{0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0, 0xfe, 0x00},
{0x1e, 0xfe, 0x00, 0xe0, 0x0e, 0xfe, 0x00, 0xf0},
{0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e, 0xfe}, /*sw */
{0x1e, 0xfe, 0xe0, 0x00, 0x0e, 0xfe, 0xf0, 0x00},
{0x1e, 0xfe, 0xfe, 0x1e, 0x0e, 0xfe, 0xfe, 0x0e},
{0xe0, 0x00, 0x00, 0xe0, 0xf0, 0x00, 0x00, 0xf0},
{0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e, 0xfe},
{0xe0, 0x00, 0xe0, 0x00, 0xf0, 0x00, 0xf0, 0x00}, /*sw */
{0xe0, 0x00, 0xfe, 0x1e, 0xf0, 0x00, 0xfe, 0x0e},
{0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00, 0xfe},
{0xe0, 0x1e, 0x1e, 0xe0, 0xf0, 0x0e, 0x0e, 0xf0},
{0xe0, 0x1e, 0xe0, 0x1e, 0xf0, 0x0e, 0xf0, 0x0e}, /*sw */
{0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e, 0xfe, 0x00},
{0xe0, 0xe0, 0x00, 0x00, 0xf0, 0xf0, 0x00, 0x00},
{0xe0, 0xe0, 0x1e, 0x1e, 0xf0, 0xf0, 0x0e, 0x0e},
{0xe0, 0xe0, 0xe0, 0xe0, 0xf0, 0xf0, 0xf0, 0xf0}, /*w */
{0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe, 0xfe},
{0xe0, 0xfe, 0x00, 0x1e, 0xf0, 0xfe, 0x00, 0x0e},
{0xe0, 0xfe, 0x1e, 0x00, 0xf0, 0xfe, 0x0e, 0x00},
{0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0, 0xfe}, /*sw */
{0xe0, 0xfe, 0xfe, 0xe0, 0xf0, 0xfe, 0xfe, 0xf0},
{0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00, 0xfe},
{0xfe, 0x00, 0x1e, 0xe0, 0xfe, 0x00, 0x0e, 0xf0},
{0xfe, 0x00, 0xe0, 0x1e, 0xfe, 0x00, 0xf0, 0x0e},
{0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00, 0xfe, 0x00}, /*sw */
{0xfe, 0x1e, 0x00, 0xe0, 0xfe, 0x0e, 0x00, 0xf0},
{0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e, 0xfe},
{0xfe, 0x1e, 0xe0, 0x00, 0xfe, 0x0e, 0xf0, 0x00},
{0xfe, 0x1e, 0xfe, 0x1e, 0xfe, 0x0e, 0xfe, 0x0e}, /*sw */
{0xfe, 0xe0, 0x00, 0x1e, 0xfe, 0xf0, 0x00, 0x0e},
{0xfe, 0xe0, 0x1e, 0x00, 0xfe, 0xf0, 0x0e, 0x00},
{0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0, 0xfe},
{0xfe, 0xe0, 0xfe, 0xe0, 0xfe, 0xf0, 0xfe, 0xf0}, /*sw */
{0xfe, 0xfe, 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x00},
{0xfe, 0xfe, 0x1e, 0x1e, 0xfe, 0xfe, 0x0e, 0x0e},
{0xfe, 0xfe, 0xe0, 0xe0, 0xfe, 0xfe, 0xf0, 0xf0},
{0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe} /*w */
};
bool gl_des_is_weak_key (const char * key) {
char work[8];
int i, left, right, middle, cmp_result;
/* clear parity bits */
for (i = 0; i < 8; ++i)
work[i] = ((unsigned char)key[i]) & 0xfe;
/* binary search in the weak key table */
left = 0;
right = 63;
while (left <= right)
{
middle = (left + right) / 2;
if (!(cmp_result = memcmp (work, weak_keys[middle], 8)))
return -1;
if (cmp_result > 0)
left = middle + 1;
else
right = middle - 1;
}
return 0;
}
/*
* Macro to swap bits across two words.
*/
#define DO_PERMUTATION(a, temp, b, offset, mask) \
temp = ((a>>offset) ^ b) & mask; \
b ^= temp; \
a ^= temp<<offset;
/*
* This performs the 'initial permutation' of the data to be encrypted
* or decrypted. Additionally the resulting two words are rotated one bit
* to the left.
*/
#define INITIAL_PERMUTATION(left, temp, right) \
DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f) \
DO_PERMUTATION(left, temp, right, 16, 0x0000ffff) \
DO_PERMUTATION(right, temp, left, 2, 0x33333333) \
DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff) \
right = (right << 1) | (right >> 31); \
temp = (left ^ right) & 0xaaaaaaaa; \
right ^= temp; \
left ^= temp; \
left = (left << 1) | (left >> 31);
/*
* The 'inverse initial permutation'.
*/
#define FINAL_PERMUTATION(left, temp, right) \
left = (left << 31) | (left >> 1); \
temp = (left ^ right) & 0xaaaaaaaa; \
left ^= temp; \
right ^= temp; \
right = (right << 31) | (right >> 1); \
DO_PERMUTATION(right, temp, left, 8, 0x00ff00ff) \
DO_PERMUTATION(right, temp, left, 2, 0x33333333) \
DO_PERMUTATION(left, temp, right, 16, 0x0000ffff) \
DO_PERMUTATION(left, temp, right, 4, 0x0f0f0f0f)
/*
* A full DES round including 'expansion function', 'sbox substitution'
* and 'primitive function P' but without swapping the left and right word.
* Please note: The data in 'from' and 'to' is already rotated one bit to
* the left, done in the initial permutation.
*/
#define DES_ROUND(from, to, work, subkey) \
work = from ^ *subkey++; \
to ^= sbox8[ work & 0x3f ]; \
to ^= sbox6[ (work>>8) & 0x3f ]; \
to ^= sbox4[ (work>>16) & 0x3f ]; \
to ^= sbox2[ (work>>24) & 0x3f ]; \
work = ((from << 28) | (from >> 4)) ^ *subkey++; \
to ^= sbox7[ work & 0x3f ]; \
to ^= sbox5[ (work>>8) & 0x3f ]; \
to ^= sbox3[ (work>>16) & 0x3f ]; \
to ^= sbox1[ (work>>24) & 0x3f ];
/*
* Macros to convert 8 bytes from/to 32bit words.
*/
#define READ_64BIT_DATA(data, left, right) \
left = (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3]; \
right = (data[4] << 24) | (data[5] << 16) | (data[6] << 8) | data[7];
#define WRITE_64BIT_DATA(data, left, right) \
data[0] = (left >> 24) &0xff; data[1] = (left >> 16) &0xff; \
data[2] = (left >> 8) &0xff; data[3] = left &0xff; \
data[4] = (right >> 24) &0xff; data[5] = (right >> 16) &0xff; \
data[6] = (right >> 8) &0xff; data[7] = right &0xff;
/*
* des_key_schedule(): Calculate 16 subkeys pairs (even/odd) for
* 16 encryption rounds.
* To calculate subkeys for decryption the caller
* have to reorder the generated subkeys.
*
* rawkey: 8 Bytes of key data
* subkey: Array of at least 32 uint32_ts. Will be filled
* with calculated subkeys.
*
*/
static void des_key_schedule (const char * _rawkey, uint32_t * subkey) {
const unsigned char *rawkey = (const unsigned char *) _rawkey;
uint32_t left, right, work;
int round;
READ_64BIT_DATA (rawkey, left, right)
DO_PERMUTATION (right, work, left, 4, 0x0f0f0f0f)
DO_PERMUTATION (right, work, left, 0, 0x10101010)
left = ((leftkey_swap[(left >> 0) & 0xf] << 3)
| (leftkey_swap[(left >> 8) & 0xf] << 2)
| (leftkey_swap[(left >> 16) & 0xf] << 1)
| (leftkey_swap[(left >> 24) & 0xf])
| (leftkey_swap[(left >> 5) & 0xf] << 7)
| (leftkey_swap[(left >> 13) & 0xf] << 6)
| (leftkey_swap[(left >> 21) & 0xf] << 5)
| (leftkey_swap[(left >> 29) & 0xf] << 4));
left &= 0x0fffffff;
right = ((rightkey_swap[(right >> 1) & 0xf] << 3)
| (rightkey_swap[(right >> 9) & 0xf] << 2)
| (rightkey_swap[(right >> 17) & 0xf] << 1)
| (rightkey_swap[(right >> 25) & 0xf])
| (rightkey_swap[(right >> 4) & 0xf] << 7)
| (rightkey_swap[(right >> 12) & 0xf] << 6)
| (rightkey_swap[(right >> 20) & 0xf] << 5)
| (rightkey_swap[(right >> 28) & 0xf] << 4));
right &= 0x0fffffff;
for (round = 0; round < 16; ++round)
{
left = ((left << encrypt_rotate_tab[round])
| (left >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff;
right = ((right << encrypt_rotate_tab[round])
| (right >> (28 - encrypt_rotate_tab[round]))) & 0x0fffffff;
*subkey++ = (((left << 4) & 0x24000000)
| ((left << 28) & 0x10000000)
| ((left << 14) & 0x08000000)
| ((left << 18) & 0x02080000)
| ((left << 6) & 0x01000000)
| ((left << 9) & 0x00200000)
| ((left >> 1) & 0x00100000)
| ((left << 10) & 0x00040000)
| ((left << 2) & 0x00020000)
| ((left >> 10) & 0x00010000)
| ((right >> 13) & 0x00002000)
| ((right >> 4) & 0x00001000)
| ((right << 6) & 0x00000800)
| ((right >> 1) & 0x00000400)
| ((right >> 14) & 0x00000200)
| (right & 0x00000100)
| ((right >> 5) & 0x00000020)
| ((right >> 10) & 0x00000010)
| ((right >> 3) & 0x00000008)
| ((right >> 18) & 0x00000004)
| ((right >> 26) & 0x00000002)
| ((right >> 24) & 0x00000001));
*subkey++ = (((left << 15) & 0x20000000)
| ((left << 17) & 0x10000000)
| ((left << 10) & 0x08000000)
| ((left << 22) & 0x04000000)
| ((left >> 2) & 0x02000000)
| ((left << 1) & 0x01000000)
| ((left << 16) & 0x00200000)
| ((left << 11) & 0x00100000)
| ((left << 3) & 0x00080000)
| ((left >> 6) & 0x00040000)
| ((left << 15) & 0x00020000)
| ((left >> 4) & 0x00010000)
| ((right >> 2) & 0x00002000)
| ((right << 8) & 0x00001000)
| ((right >> 14) & 0x00000808)
| ((right >> 9) & 0x00000400)
| ((right) & 0x00000200)
| ((right << 7) & 0x00000100)
| ((right >> 7) & 0x00000020)
| ((right >> 3) & 0x00000011)
| ((right << 2) & 0x00000004)
| ((right >> 21) & 0x00000002));
}
}
void gl_des_setkey (gl_des_ctx *ctx, const char * key) {
int i;
des_key_schedule (key, ctx->encrypt_subkeys);
for (i = 0; i < 32; i += 2)
{
ctx->decrypt_subkeys[i] = ctx->encrypt_subkeys[30 - i];
ctx->decrypt_subkeys[i + 1] = ctx->encrypt_subkeys[31 - i];
}
}
bool gl_des_makekey (gl_des_ctx *ctx, const char * key, size_t keylen) {
if (keylen != 8)
return false;
gl_des_setkey (ctx, key);
return !gl_des_is_weak_key (key);
}
void gl_des_ecb_crypt (gl_des_ctx *ctx, const char * _from, char * _to, int mode) {
const unsigned char *from = (const unsigned char *) _from;
unsigned char *to = (unsigned char *) _to;
uint32_t left, right, work;
uint32_t *keys;
keys = mode ? ctx->decrypt_subkeys : ctx->encrypt_subkeys;
READ_64BIT_DATA (from, left, right)
INITIAL_PERMUTATION (left, work, right)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
DES_ROUND (right, left, work, keys) DES_ROUND (left, right, work, keys)
FINAL_PERMUTATION (right, work, left)
WRITE_64BIT_DATA (to, right, left)
}
/* Process LEN bytes of BUFFER, accumulating context into CTX.
It is assumed that LEN % 64 == 0. */
void md4_process_block (const void *buffer, size_t len, struct md4_ctx *ctx) {
const uint32_t *words = buffer;
size_t nwords = len / sizeof (uint32_t);
const uint32_t *endp = words + nwords;
uint32_t x[16];
uint32_t A = ctx->A;
uint32_t B = ctx->B;
uint32_t C = ctx->C;
uint32_t D = ctx->D;
/* First increment the byte count. RFC 1320 specifies the possible
length of the file up to 2^64 bits. Here we only compute the
number of bytes. Do a double word increment. */
ctx->total[0] += len;
if (ctx->total[0] < len)
++ctx->total[1];
/* Process all bytes in the buffer with 64 bytes in each round of
the loop. */
while (words < endp)
{
int t;
for (t = 0; t < 16; t++)
{
x[t] = SWAP (*words);
words++;
}
/* Round 1. */
R1 (A, B, C, D, 0, 3);
R1 (D, A, B, C, 1, 7);
R1 (C, D, A, B, 2, 11);
R1 (B, C, D, A, 3, 19);
R1 (A, B, C, D, 4, 3);
R1 (D, A, B, C, 5, 7);
R1 (C, D, A, B, 6, 11);
R1 (B, C, D, A, 7, 19);
R1 (A, B, C, D, 8, 3);
R1 (D, A, B, C, 9, 7);
R1 (C, D, A, B, 10, 11);
R1 (B, C, D, A, 11, 19);
R1 (A, B, C, D, 12, 3);
R1 (D, A, B, C, 13, 7);
R1 (C, D, A, B, 14, 11);
R1 (B, C, D, A, 15, 19);
/* Round 2. */
R2 (A, B, C, D, 0, 3);
R2 (D, A, B, C, 4, 5);
R2 (C, D, A, B, 8, 9);
R2 (B, C, D, A, 12, 13);
R2 (A, B, C, D, 1, 3);
R2 (D, A, B, C, 5, 5);
R2 (C, D, A, B, 9, 9);
R2 (B, C, D, A, 13, 13);
R2 (A, B, C, D, 2, 3);
R2 (D, A, B, C, 6, 5);
R2 (C, D, A, B, 10, 9);
R2 (B, C, D, A, 14, 13);
R2 (A, B, C, D, 3, 3);
R2 (D, A, B, C, 7, 5);
R2 (C, D, A, B, 11, 9);
R2 (B, C, D, A, 15, 13);
/* Round 3. */
R3 (A, B, C, D, 0, 3);
R3 (D, A, B, C, 8, 9);
R3 (C, D, A, B, 4, 11);
R3 (B, C, D, A, 12, 15);
R3 (A, B, C, D, 2, 3);
R3 (D, A, B, C, 10, 9);
R3 (C, D, A, B, 6, 11);
R3 (B, C, D, A, 14, 15);
R3 (A, B, C, D, 1, 3);
R3 (D, A, B, C, 9, 9);
R3 (C, D, A, B, 5, 11);
R3 (B, C, D, A, 13, 15);
R3 (A, B, C, D, 3, 3);
R3 (D, A, B, C, 11, 9);
R3 (C, D, A, B, 7, 11);
R3 (B, C, D, A, 15, 15);
A = ctx->A += A;
B = ctx->B += B;
C = ctx->C += C;
D = ctx->D += D;
}
}
/* Initialize structure containing state of computation.
(RFC 1320, 3.3: Step 3) */
void md4_init_ctx (struct md4_ctx *ctx) {
ctx->A = 0x67452301;
ctx->B = 0xefcdab89;
ctx->C = 0x98badcfe;
ctx->D = 0x10325476;
ctx->total[0] = ctx->total[1] = 0;
ctx->buflen = 0;
}
/* Put result from CTX in first 16 bytes following RESBUF. The result
must be in little endian byte order.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32 bits value. */
void * md4_read_ctx (const struct md4_ctx *ctx, void *resbuf) {
((uint32_t *) resbuf)[0] = SWAP (ctx->A);
((uint32_t *) resbuf)[1] = SWAP (ctx->B);
((uint32_t *) resbuf)[2] = SWAP (ctx->C);
((uint32_t *) resbuf)[3] = SWAP (ctx->D);
return resbuf;
}
/* Process the remaining bytes in the internal buffer and the usual
prolog according to the standard and write the result to RESBUF.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32 bits value. */
void * md4_finish_ctx (struct md4_ctx *ctx, void *resbuf) {
/* Take yet unprocessed bytes into account. */
uint32_t bytes = ctx->buflen;
size_t pad;
/* Now count remaining bytes. */
ctx->total[0] += bytes;
if (ctx->total[0] < bytes)
++ctx->total[1];
pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
memcpy (&((char*)ctx->buffer)[bytes], fillbuf, pad);
/* Put the 64-bit file length in *bits* at the end of the buffer. */
ctx->buffer[(bytes + pad) / 4] = SWAP (ctx->total[0] << 3);
ctx->buffer[(bytes + pad) / 4 + 1] = SWAP ((ctx->total[1] << 3) |
(ctx->total[0] >> 29));
/* Process last bytes. */
md4_process_block (ctx->buffer, bytes + pad + 8, ctx);
return md4_read_ctx (ctx, resbuf);
}
void md4_process_bytes (const void *buffer, size_t len, struct md4_ctx *ctx) {
/* When we already have some bits in our internal buffer concatenate
both inputs first. */
if (ctx->buflen != 0)
{
size_t left_over = ctx->buflen;
size_t add = 128 - left_over > len ? len : 128 - left_over;
memcpy (&((char*)ctx->buffer)[left_over], buffer, add);
ctx->buflen += add;
if (ctx->buflen > 64)
{
md4_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
ctx->buflen &= 63;
/* The regions in the following copy operation cannot overlap. */
memcpy (ctx->buffer, &((char*)ctx->buffer)[(left_over + add) & ~63],
ctx->buflen);
}
buffer = (const char *) buffer + add;
len -= add;
}
/* Process available complete blocks. */
if (len >= 64)
{
#if !_STRING_ARCH_unaligned
if (UNALIGNED_P (buffer))
while (len > 64)
{
md4_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
buffer = (const char *) buffer + 64;
len -= 64;
}
else
#endif
{
md4_process_block (buffer, len & ~63, ctx);
buffer = (const char *) buffer + (len & ~63);
len &= 63;
}
}
/* Move remaining bytes in internal buffer. */
if (len > 0)
{
size_t left_over = ctx->buflen;
memcpy (&((char*)ctx->buffer)[left_over], buffer, len);
left_over += len;
if (left_over >= 64)
{
md4_process_block (ctx->buffer, 64, ctx);
left_over -= 64;
memcpy (ctx->buffer, &ctx->buffer[16], left_over);
}
ctx->buflen = left_over;
}
}
/* Compute MD4 message digest for bytes read from STREAM. The
resulting message digest number will be written into the 16 bytes
beginning at RESBLOCK. */
int md4_stream (FILE * stream, void *resblock) {
struct md4_ctx ctx;
char buffer[BLOCKSIZE + 72];
size_t sum;
/* Initialize the computation context. */
md4_init_ctx (&ctx);
/* Iterate over full file contents. */
while (1)
{
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
computation function processes the whole buffer so that with the
next round of the loop another block can be read. */
size_t n;
sum = 0;
/* Read block. Take care for partial reads. */
while (1)
{
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
sum += n;
if (sum == BLOCKSIZE)
break;
if (n == 0)
{
/* Check for the error flag IFF N == 0, so that we don't
exit the loop after a partial read due to e.g., EAGAIN
or EWOULDBLOCK. */
if (ferror (stream))
return 1;
goto process_partial_block;
}
/* We've read at least one byte, so ignore errors. But always
check for EOF, since feof may be true even though N > 0.
Otherwise, we could end up calling fread after EOF. */
if (feof (stream))
goto process_partial_block;
}
/* Process buffer with BLOCKSIZE bytes. Note that
BLOCKSIZE % 64 == 0
*/
md4_process_block (buffer, BLOCKSIZE, &ctx);
}
process_partial_block:;
/* Process any remaining bytes. */
if (sum > 0)
md4_process_bytes (buffer, sum, &ctx);
/* Construct result in desired memory. */
md4_finish_ctx (&ctx, resblock);
return 0;
}
/* Compute MD4 message digest for LEN bytes beginning at BUFFER. The
result is always in little endian byte order, so that a byte-wise
output yields to the wanted ASCII representation of the message
digest. */
void * md4_buffer (const char *buffer, size_t len, void *resblock) {
struct md4_ctx ctx;
/* Initialize the computation context. */
md4_init_ctx (&ctx);
/* Process whole buffer but last len % 64 bytes. */
md4_process_bytes (buffer, len, &ctx);
/* Put result in desired memory area. */
return md4_finish_ctx (&ctx, resblock);
}
void * memxor (void *dest, const void *src, size_t n) {
char const *s = src;
char *d = dest;
for (; n > 0; n--)
*d++ ^= *s++;
return dest;
}
int hmac_md5 (const void *key, size_t keylen, const void *in, size_t inlen, void *resbuf)
{
struct md5_ctx inner;
struct md5_ctx outer;
char optkeybuf[16];
char block[64];
char innerhash[16];
/* Reduce the key's size, so that it becomes <= 64 bytes large. */
if (keylen > 64)
{
struct md5_ctx keyhash;
md5_init_ctx (&keyhash);
md5_process_bytes (key, keylen, &keyhash);
md5_finish_ctx (&keyhash, optkeybuf);
key = optkeybuf;
keylen = 16;
}
/* Compute INNERHASH from KEY and IN. */
md5_init_ctx (&inner);
memset (block, IPAD, sizeof (block));
memxor (block, key, keylen);
md5_process_block (block, 64, &inner);
md5_process_bytes (in, inlen, &inner);
md5_finish_ctx (&inner, innerhash);
/* Compute result from KEY and INNERHASH. */
md5_init_ctx (&outer);
memset (block, OPAD, sizeof (block));
memxor (block, key, keylen);
md5_process_block (block, 64, &outer);
md5_process_bytes (innerhash, 16, &outer);
md5_finish_ctx (&outer, resbuf);
return 0;
}
/* Initialize structure containing state of computation.
(RFC 1321, 3.3: Step 3) */
void
md5_init_ctx (struct md5_ctx *ctx)
{
ctx->A = 0x67452301;
ctx->B = 0xefcdab89;
ctx->C = 0x98badcfe;
ctx->D = 0x10325476;
ctx->total[0] = ctx->total[1] = 0;
ctx->buflen = 0;
}
/* Put result from CTX in first 16 bytes following RESBUF. The result
must be in little endian byte order.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32-bit value. */
void *
md5_read_ctx (const struct md5_ctx *ctx, void *resbuf)
{
((uint32_t *) resbuf)[0] = SWAP (ctx->A);
((uint32_t *) resbuf)[1] = SWAP (ctx->B);
((uint32_t *) resbuf)[2] = SWAP (ctx->C);
((uint32_t *) resbuf)[3] = SWAP (ctx->D);
return resbuf;
}
/* Process the remaining bytes in the internal buffer and the usual
prolog according to the standard and write the result to RESBUF.
IMPORTANT: On some systems it is required that RESBUF is correctly
aligned for a 32-bit value. */
void *
md5_finish_ctx (struct md5_ctx *ctx, void *resbuf)
{
/* Take yet unprocessed bytes into account. */
uint32_t bytes = ctx->buflen;
size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
/* Now count remaining bytes. */
ctx->total[0] += bytes;
if (ctx->total[0] < bytes)
++ctx->total[1];
/* Put the 64-bit file length in *bits* at the end of the buffer. */
ctx->buffer[size - 2] = SWAP (ctx->total[0] << 3);
ctx->buffer[size - 1] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
/* Process last bytes. */
md5_process_block (ctx->buffer, size * 4, ctx);
return md5_read_ctx (ctx, resbuf);
}
/* Compute MD5 message digest for bytes read from STREAM. The
resulting message digest number will be written into the 16 bytes
beginning at RESBLOCK. */
int
md5_stream (FILE *stream, void *resblock)
{
struct md5_ctx ctx;
char buffer[BLOCKSIZE + 72];
size_t sum;
/* Initialize the computation context. */
md5_init_ctx (&ctx);
/* Iterate over full file contents. */
while (1)
{
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
computation function processes the whole buffer so that with the
next round of the loop another block can be read. */
size_t n;
sum = 0;
/* Read block. Take care for partial reads. */
while (1)
{
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
sum += n;
if (sum == BLOCKSIZE)
break;
if (n == 0)
{
/* Check for the error flag IFF N == 0, so that we don't
exit the loop after a partial read due to e.g., EAGAIN
or EWOULDBLOCK. */
if (ferror (stream))
return 1;
goto process_partial_block;
}
/* We've read at least one byte, so ignore errors. But always
check for EOF, since feof may be true even though N > 0.
Otherwise, we could end up calling fread after EOF. */
if (feof (stream))
goto process_partial_block;
}