From 96308bc382336753e041d4b002554c4cebd8500e Mon Sep 17 00:00:00 2001 From: Joris Van den Bossche Date: Thu, 26 Oct 2023 15:59:16 +0200 Subject: [PATCH] Backport PR #55691: REGR: fix read_parquet with column of large strings (avoid overflow from concat) --- doc/source/whatsnew/v2.1.2.rst | 1 + pandas/core/arrays/string_.py | 12 ++++++++++-- pandas/tests/io/test_parquet.py | 12 ++++++++++++ 3 files changed, 23 insertions(+), 2 deletions(-) diff --git a/doc/source/whatsnew/v2.1.2.rst b/doc/source/whatsnew/v2.1.2.rst index 1d2d89e7eadd1..684093d9cc097 100644 --- a/doc/source/whatsnew/v2.1.2.rst +++ b/doc/source/whatsnew/v2.1.2.rst @@ -28,6 +28,7 @@ Fixed regressions - Fixed regression in :meth:`DataFrameGroupBy.agg` and :meth:`SeriesGroupBy.agg` where if the option ``compute.use_numba`` was set to True, groupby methods not supported by the numba engine would raise a ``TypeError`` (:issue:`55520`) - Fixed performance regression with wide DataFrames, typically involving methods where all columns were accessed individually (:issue:`55256`, :issue:`55245`) - Fixed regression in :func:`merge_asof` raising ``TypeError`` for ``by`` with datetime and timedelta dtypes (:issue:`55453`) +- Fixed regression in :func:`read_parquet` when reading a file with a string column consisting of more than 2 GB of string data and using the ``"string"`` dtype (:issue:`55606`) - Fixed regression in :meth:`DataFrame.to_sql` not roundtripping datetime columns correctly for sqlite when using ``detect_types`` (:issue:`55554`) .. --------------------------------------------------------------------------- diff --git a/pandas/core/arrays/string_.py b/pandas/core/arrays/string_.py index 58c638e7f59b5..a41214ae17044 100644 --- a/pandas/core/arrays/string_.py +++ b/pandas/core/arrays/string_.py @@ -223,11 +223,19 @@ def __from_arrow__( # pyarrow.ChunkedArray chunks = array.chunks + results = [] + for arr in chunks: + # convert chunk by chunk to numpy and concatenate then, to avoid + # overflow for large string data when concatenating the pyarrow arrays + arr = arr.to_numpy(zero_copy_only=False) + arr = ensure_string_array(arr, na_value=libmissing.NA) + results.append(arr) + if len(chunks) == 0: arr = np.array([], dtype=object) else: - arr = pyarrow.concat_arrays(chunks).to_numpy(zero_copy_only=False) - arr = ensure_string_array(arr, na_value=libmissing.NA) + arr = np.concatenate(results) + # Bypass validation inside StringArray constructor, see GH#47781 new_string_array = StringArray.__new__(StringArray) NDArrayBacked.__init__( diff --git a/pandas/tests/io/test_parquet.py b/pandas/tests/io/test_parquet.py index 41ae4042e9ae0..1d68f12270b55 100644 --- a/pandas/tests/io/test_parquet.py +++ b/pandas/tests/io/test_parquet.py @@ -1144,6 +1144,18 @@ def test_infer_string_large_string_type(self, tmp_path, pa): ) tm.assert_frame_equal(result, expected) + # NOTE: this test is not run by default, because it requires a lot of memory (>5GB) + # @pytest.mark.slow + # def test_string_column_above_2GB(self, tmp_path, pa): + # # https://github.com/pandas-dev/pandas/issues/55606 + # # above 2GB of string data + # v1 = b"x" * 100000000 + # v2 = b"x" * 147483646 + # df = pd.DataFrame({"strings": [v1] * 20 + [v2] + ["x"] * 20}, dtype="string") + # df.to_parquet(tmp_path / "test.parquet") + # result = read_parquet(tmp_path / "test.parquet") + # assert result["strings"].dtype == "string" + class TestParquetFastParquet(Base): def test_basic(self, fp, df_full):