-
Notifications
You must be signed in to change notification settings - Fork 38
/
EE509.htm
703 lines (616 loc) · 29.3 KB
/
EE509.htm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="http://people.bu.edu/dietze/lab_style.css">
<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js"></script>
<script type="text/javascript" src="read_more.js"></script>
<title>Applied Environmental Statistics EE 509 2022</title>
</head>
<body>
<h1 align=center>EE 509: Applied Environmental Statistics 2022</h1>
<h2 align=center>Course syllabus</h2>
<p><b>Instructor:</b></p>
<p>Michael C. Dietze</p>
<p><a href="mailto:[email protected]">[email protected]</a></p>
<p>STO 457A</p>
<p>Office hours by appointment</p>
<p><b>Goals:</b></p>
<p>The primary focus of this course is on probability-based statistical methods employed in the environmental, earth, and ecological sciences. Students in this class will explore a variety of statistical modeling topics from both a likelihood and Bayesian perspective, building progressively from simple models to sophisticated analyses. Students will be exposed to the concepts behind these approaches, the computational techniques to implement them, and their application to common problems in environmental science.Throughout the focus will be on how to construct statistical models that allow us to confront theory with data. The first third of the course will cover foundational concepts. The middle third will work from simple linear regression up to general linear mixed models and hierarchical models with particular emphasis on the complexities common to environmental data: heteroskedasticity, missing data, latent variables, errors in variables, and multiple sources of variability at different spatial,temporal, and taxonomic scales. The last third will cover time-series and spatial data, both of which are ubiquitous in the environmental and earth sciences. Attention throughout the course will be given to environmental applications, and in particular data and models unique (e.g. mark-recapture, matrix population models) or particularly important (e.g. kriging, CAR) to earth and environmental science.</p>
<p><b>Contact
hours/week:</b>
Three 50-min lectures and one 2-hr computer lab</p>
<p><b>Prerequisites:</b></p>
<p>Introductory statistics (CAS MA115/116 or MA213/124 or equivalent) and</p>
<p>Calculus I (CAS MA121 or CAS MA123 or equivalent) and</p>
<p>Probability(CAS MA581) or consent of the instructor</p>
<p><b>BU HUB:</b></p>
<p>This course meets the following HUB learning outcomes</p>
<p><u>Philosophical Inquiry and Life’s Meanings</u></p>
<p><i>1. Students will demonstrate knowledge of notable works in philosophical thought, make meaningful connections among them, and be able to relate those works to their own lives and those of others.</i></p>
<p>This course makes important connections between the philosophy of science and the practical applications of statistical methods. We explicitly discuss multiple alternative schools of thought in the philosophy of science (Popper, Kuhn, Polanyi, Lakotos) and how they relate to hypothesis testing and model selection. A core, recurring component of the course involves an ongoing discussion about Bayesian vs. frequentist philosophies: What do probability and uncertainty mean (e.g. is probability subjective or objective)? How does the fact that we can never observe the world perfectly affect our ability to make inferences? Is there chance/stochasticity in the world around us, or is the universe fundamentally deterministic, and how does that belief affect our ability to make inferences about the world around us? How do these philosophies impact the types of questions we can ask about the natural world? Students will demonstrate this knowledge through a combination of exam questions and lab reports. </p>
<p><i>2. Students will demonstrate the reasoning skills and possess the vocabulary to reflect upon significant philosophical questions and topics such as what constitutes a good life, right action, meaningful activity, knowledge, truth, or a just society.</i></p>
<p>As noted in Outcome 1, this course will ask students to reflect on significant questions about knowledge and truth. Demonstration of vocabulary, reasoning skills, and notable works will occur through exam questions and lab report questions.</p>
<p><u>Writing Intensive</u></p>
<p><i>1. Students will be able to craft responsible, considered, and well-structured written arguments, using media and modes of expression appropriate to the situation.</i></p>
<p>The semester project is a core component of this course, which culminates in a 5000 word paper (15-20 pages double spaced, plus abstract, figures, tables, and citations) written according to the guidelines and style of a scientific journal. The development of the paper is scaffolded through a number of project milestones where students get feedback from the instructor and have the opportunity to revise the different sections of the paper (project prospectus = Introduction, model description = Methods, preliminary results = Results). There is also one lab (#12) specifically set aside for paired reviews, where students receive both oral and written feedback from a peer. In addition, students will also submit thirteen other lab reports, with a typical length of 10-25 pages each (including text, code, figures, and tables). Aimed at graduate student and upper-level undergraduates in our major, learning well-structured scientific writing is the key mode of expression appropriate for this discipline.</p>
<p><i>2. Students will be able to read with understanding, engagement, appreciation, and critical judgment.</i></p>
<p>In addition to technical writing, this course will help students to better develop skills at technical reading. Indeed, a core aim of this course is to enable students to be able to read and critically evaluate the modern quantitative methods used in the primary scientific literature. Specifically, through the use of case-study based labs students will learn how to evaluate the hypotheses laid out in each problem, the statistical models used to test these hypotheses, and the results and discussion of such models. </p>
<p><i>3. Students will be able to write clearly and coherently in a range of genres and styles, integrating graphic and multimedia elements as appropriate.</i></p>
<p>Students will integrate graphic elements (figures and graphs) throughout their lab reports and final project.</p>
<p><b>Course Materials:</b></p>
<p>Required Text: Models for Ecological Data: An Introduction. 2007. James S. Clark ISBN: 9780691121789<br>
Book is available at the university bookstore or can be purchased online</p>
<p>The primary text will be supplemented with PDFs of select readings from additional textbooks and the primary literature. Literature readings focus on examples of the application of statistical models in the environmental literature rather than methods papers. These “case studies” will also serve as the focus for the analysis problems in the lab component.</p>
<p>Students will also make extensive use of the following statistical software (which is freely available on the internet) in order to complete assignments:</p>
<ul>
<li><a href="http://www.r-project.org/">R</a></li>
<li><a href="http://www.rstudio.com/">RStudio</a></li>
<li><a href="http://mcmc-jags.sourceforge.net/">JAGS</a></li>
<li><a href="http://github.com/mdietze/EE509">Gitub</a></li>
</ul>
<p>If you want to avoid running computationally-intensive analyses on your personal computer / laptop, you may want to try running RStudio Server through the <a href="http://www.bu.edu/tech/support/research/system-usage/scc-ondemand/">SCC OnDemand</a> web interface, which will allow you to run jobs on BU SCC cluster (BU only)</p>
<p><b>Grading:</b></p>
<p>Grading will be based on lab reports/problem sets, a
semester-long project, and four exams.</p>
<table>
<tr>
<td>Lab reports/problem sets (10 points each)</td><td>= 130</td>
</tr>
<tr>
<td>Semester project</td><td>= 80</td>
</tr>
<tr>
<td> project proposal (10)</td><td></td>
</tr>
<tr>
<td> model description (10)</td><td></td>
</tr>
<tr>
<td> preliminary analysis (20)</td><td></td>
</tr>
<tr>
<td> final report (40)</td><td></td>
</tr>
<tr>
<td>Exams (20, 20, 25, 25 points )</td><td> = 90</td>
</tr>
<tr>
<td>Total</td><td>= 360</td>
</tr>
</table>
<p><b>Lectures/Labs</b></p>
<p>Please refer to the course website for the schedule of lecture/lab topics and the assigned readings that go with these. Students are expected to complete readings before class. </p>
<p><b>Lab attendance is <i><u>mandatory.</u></i></b> Lab reports will not be accepted for labs missed due to unexcused absences. Lab reports are due by the start of lab the following week and will be penalized 10%/day if turned in late. Lab materials will be made available in the <a href="https://github.com/mdietze/EE509">GitHub repository</a>. Details on what needs to be turned in will be provided with each lab.</p>
<p>You may discuss lab assignments with other students, but you each must turn in your own written report and code. </p>
<p><b>Semester Project</b></p>
<p>A core component of this course is a semester-long independent analysis and write-up. There are a number of benchmarks over the course of the semester to ensure adequate progress is being made and to provide you with feedback. A more detailed description will be provided before each task is due.</p>
<p><u>Project Proposal:</u> 1-2 pages double-spaced. Students are expected to describe the data set they intend to analyze and present the <u>scientific question</u> that motivates their analysis. Students are encouraged to make use of their own data sets for the semester project.</p>
<p><u>Model description:</u> 1-2 pages double-spaced. A brief description of <i>how</i> the data will be analyzed. Should include a mathematical specification of the process model(s), the data model, and the parameter model and a figure of how these relate to one another.</p>
<p><u>Preliminary Analysis:</u> 1-3 pages double space text <i>plus</i> R/BUGS code <i>plus</i> a minimum of 5 <b><i>results</i></b> figures with legends. At this point analysis should
be mostly complete. Text should briefly describe the computational methods of the analysis and any modifications of the model description (i.e. what did you actually end up doing).</p>
<p><u>Final Report:</u> The final report should be written <u>in the style and tone of a scholarly publication</u>, though with greater emphasis on the results and statistical methods employed and less on introduction and discussion. Specifically, we will be using the <i>Ecology Letters</i> format: no more than 5000 words in length and no more than 6 figures or tables. For more detailed guidelines see http://onlinelibrary.wiley.com/journal/10.1111/%28ISSN%291461-0248/homepage/ForAuthors.html</p>
<p>Project Due Dates:</p>
<p>Project Proposal: 2/11</p>
<p>Model Description: 3/14</p>
<p>Preliminary Analysis: 4/22</p>
<p>Final Report: Before Exam 4 (Final)</p>
<p><b>Exams</b></p>
<p>Exams will be a combination of short answer and multiple choice. The final exam will be non-cumulative.</p>
<p>Midterm I: 2/7</p>
<p>Midterm II: 2/22</p>
<p>Midterm III: 4/1</p>
<p>Final: 5/10</p>
<p><b>Lecture Schedule</b></p>
<table border=1 cellspacing=0 cellpadding=0 width=865>
<tr>
<td width=40><p>Date</p></td>
<td width=330><p>Topics</p></td>
<td width=430><p>Reading</p></td>
<td width=65><p>Project</p></td>
</tr>
<tr>
<td><p>1/21</p></td>
<td><p>Introduction to model-based inference<br>Case: synthesis of field data, remote sensing, and mechanistic models</p></td>
<td><p>Clark: Chapter 1<br>Optional: Otto and Day:<a href="http://people.bu.edu/dietze/Bayes2018/MathReview.pdf"> Math Review</a><br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson01_intro.pdf">Slides</a></p></td>
<td></td>
</tr>
<tr>
<td><p>1/24</p></td>
<td><p>Probability theory: joint, conditional, and marginal distributions<br>Case: Island Biogeography</p></td>
<td><p><a href="http://people.bu.edu/dietze/Bayes2018/HM003.pdf">Hilborn and Mangel Ch 3</a> p39-62<br>Optional: Clark Appendix D<br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson02_Probability.pdf">Slides</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>1/26</p></td>
<td><p>Probability theory: discrete and continuous distributions<br>Case: Zero-inflated census data</p></td>
<td><p><a href="http://people.bu.edu/dietze/Bayes2018/HM003.pdf">Hilborn and Mangle Ch 3</a> p62-93<br>Optional: Clark Appendix F <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson3_CommonDistributions.pdf">Slides</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>1/28</p></td>
<td><p>Maximum Likelihood<br>Case: Censured mortality data</p></td>
<td><p>Chapter 3.1-3.2<br>Optional: Chapter 2<br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson04_MLE.pdf">Slides</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>1/31</p></td>
<td><p>Point estimation by MLE<br>Case: Survival analysis, population growth rate</p></td>
<td><p>Chapter 3.3-3.5<br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson05_PointEst.pdf">Slides</a>
</p></td>
<td> </td>
</tr>
<tr>
<td><p>2/2</p></td>
<td><p>Analytically tractable MLEs<br>
Case: Bestiary of response functions</p></td>
<td><p>Chapter 3.6-3.9 <br>
Optional: Bolker <a href="http://people.biology.ufl.edu/bolker/emdbook/chap3A.pdf">Ch 3</a> <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson06_MLE3.pdf">Slides</a>
</td>
<td></td>
</tr>
<tr>
<td><p>2/4</p></td>
<td><p>Intractable MLEs and basic numerical optimization<br>
Case: Michaelis-Menton kinetics</p></td>
<td><p>Chapter 3.10-3.13 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson07_Optim.pdf">Slides</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>2/7</p></td>
<td><p><b>EXAM 1:</b> Probability Theory, Maximum Likelihood</p></td>
<td></td>
<td></td>
</tr>
<tr>
<td><p>2/9</p></td>
<td><p>Bayes Theorem<br>
Case: Detecting climate warming</p></td>
<td><p>Chapter 4.1<br>
<a href="http://people.bu.edu/dietze/Bayes2018/Ellison2004.pdf">Ellison 2004</a><br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson08_Bayes.pdf">Slides</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>2/11</p></td>
<td><p>Point estimation using Bayes<br>
Case: Normal mean and variance</p></td>
<td><p>Chapter 4.2 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson09_Bayes2.pdf">Slides</a>
</p></td>
<td><p><a href="http://people.bu.edu/dietze/Bayes2020/ProjectProposal.2020.pdf"><b>Project Proposals</b></a></p></td>
</tr>
<tr>
<td><p>2/14</p></td>
<td><p>Analytically-tractable Bayes: conjugacy and priors<br>
Case: Plant trait databases</p></td>
<td><p>Chapter 4.3, Appendix G <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson10_Priors.pdf">Slides</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>2/16</p></td>
<td><p>Numerical methods for Bayes: MCMC</p></td>
<td><p>Chapter 7.1-7.2, 7.3 intro <br>
<a href="http://www.nytimes.com/2014/09/30/science/the-odds-continually-updated.html?_r=0">NY Times article</a><br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson11_MCMC.pdf">Slides</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>2/18</p></td>
<td><p>MCMC: Metropolis-Hastings, Gibbs</p></td>
<td><p>7.3.1-7.3.4, 7.5 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson12_Metropolis.pdf">MH Slides</a><br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson13_Gibbs.pdf">Gibbs Slides</a>
</p>
</td>
<td></td>
</tr>
<tr>
<td><p>2/22</p></td>
<td><p><b>EXAM 2:</b> Bayes, MCMC</p></td>
<td></td>
<td></td>
</tr>
<tr>
<td><p>2/23</p></td>
<td><p>Interval Estimation: Bayesian credible intervals</p></td>
<td><p>Chapter 5 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson14_CI.pdf">Slides</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>2/25</p></td>
<td><p>Frequentist confidence intervals I: Likelihood profile, Fisher information</p></td>
<td><p>Chapter 5 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson15_CI2.pdf">Slides</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>2/28</p></td>
<td><p>Frequentist confidence intervals II: Bootstrapping</p></td>
<td><p>Chapter 5</td>
<td></td>
</tr>
<tr>
<td><p>3/2</p></td>
<td><p>Hypothesis testing & competing philosophies of science: Popper, Kuhn, Polanyi, & Lakotos</p></td>
<td><p>Hilborn and Mangel <a href="http://people.bu.edu/dietze/Bayes2018/HM_ch2.pdf">Chapter 2</a></p></td>
<td></td>
</tr>
<tr>
<td><p>3/4</p></td>
<td><p>Model Selection: Likelihood ratio test, AIC, DIC, predictive loss, model averaging<br>
Case: Multi-model weather forecasting</p></td>
<td><p>Hilborn and Mangel <a href="http://people.bu.edu/dietze/Bayes2018/HM_ch2.pdf">Chapter 2</a><br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson17_AIC.pdf">AIC Slides</a><br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson18_DIC.pdf">DIC Slides</a><br>
<a href="https://youtu.be/cVlx1wQW4Dk">Video</a>
</p></td>
<td></td>
</tr>
<tr>
<td></td>
<td><p><b>SPRING BREAK</b></p></td>
<td>
</td>
<td></td>
</tr>
<tr>
<td><p>3/14</p></td>
<td><p>Heteroskedasticity, Missing data models<br>
Case: Time-domain reflectometry</p></td>
<td><p>Chapter 5.4 & 7.4 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson19_regression.v2.pdf">Slides</a><br>
<a href="https://youtu.be/-7mR01yB9Hc">Video 1 - Heteroskedasticity</a><br>
<a href="https://youtu.be/nmcUx71lKQw">Video 2 - Errors in Variables</a>
</td>
<td><a href="http://people.bu.edu/dietze/Bayes2020/ModelDescription.2020.pdf"><b>Model Description</b></a></td>
</tr>
<tr>
<td><p>3/16</p></td>
<td><p>Errors in variables, Latent variables, Philosophy of science: imperfect observation<br>
Case: Carbon flux towers</p></td>
<td><p>Chapter 7.6, 7.7, 8.1 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson20_regression2.pdf">Slides</a><br>
<a href="https://youtu.be/F8GOc7p25Zc">Video 1 - Missing Data Models</a><br>
<a href="https://youtu.be/uA5D7k6RYHk">Video 2 - Generalized Linear Models (GLM)</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>3/18</p></td>
<td><p>Logistic regression<br>
Case: Pollution and mortality risk</p></td>
<td><p>Chapter 8.2-8.2.3 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson21_GLM.pdf">Slides</a><br>
<a href="https://youtu.be/TgODqzMfBkc">Video 1 - Poisson Regression</a><br>
<a href="https://youtu.be/XLaGcslMjpc">Video 2 - Logistic, Logit-Exponential, & Logit-Normal Models</a><br>
<a href="https://youtu.be/GV5Fl255oD0">Video 3 - Multinomial Regression</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>3/21</p></td>
<td><p>GLMs<br>
Case: Plot count data (Poisson regression)<br>
Case: Canopy position data (Multinomial)</p></td>
<td><p>Chapter 8.2-8.2.3
</p></td>
<td></td>
</tr>
<tr>
<td><p>3/23</p></td>
<td><p>Hierarchial Bayes</p></td>
<td><p>Chapter 8.2.4<br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson22_HB.pdf">Slides</a><br>
<a href="https://youtu.be/VssgU4Ey7ss">Video 1 - Hierarchical Bayes: Concepts</a><br>
<a href="https://youtu.be/_L-Lud336Ts">Video 2 - Hierarchical Bayes: Random Effects</a><br>
<a href="https://youtu.be/FALGb38oQcA">Video 3 - Hierarchical Bayes: JAGS Examples</a><br>
<a href="https://youtu.be/wuiXDmeNYFw">Video 4 - Hierarchical Bayes: Mixed Models</a><br>
</p></td>
<td></td>
</tr>
<tr>
<td><p>3/25</p></td>
<td><p>Hierarchical Bayes 2<br>
Case: Canopy and biomass allometries</p></td>
<td><p>Chapter 8.2.5 - 8.3 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson23_HB2.pdf">Slides</a><br>
<a href="https://youtu.be/z-WalpvhUdA">Video - Case study: Hierarchical allometries</a><br>
</p></td>
<td></td>
</tr>
<tr>
<td><p>3/28</p></td>
<td><p>GAMs and basis functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td><p>3/30</p></td>
<td><p>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td><p>4/1</p></td>
<td><p><b>EXAM 3</b> GLMM, HB</p></td>
<td></td>
<td></td>
</tr>
<tr>
<td><p>4/4</p></td>
<td><p>Hierarchical Bayes<br>
Philosophy of science: can models have randomly varying parameters?</p>
</td>
<td>Chapter 8.2.5-8.3</td>
<td></td>
</tr>
<tr>
<td><p>4/6</p></td>
<td><p>Nonlinear models<br>
Case: Coho salmon<br>
Case: Photosynthetic responses to light, CO2</p></td>
<td><p>Chapter 8.4<br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson24_nonlinear.pdf">Slides</a><br>
<a href="https://youtu.be/ukUzrg250eg">Video 1 - Nonlinear Models</a><br>
<a href="https://youtu.be/PQ_HjVV087I">Video 2 - Nonlinear Hierarchical Models</a><br>
<a href="https://youtu.be/w8UeL1HU0Qw">Video 3 - Nonlinear Hierarchical Models with covariates</a><br>
<a href="https://youtu.be/7lj841LZGZg">Video 4 - Hierarchical Data Fusion</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>4/8</p></td>
<td><p>Applications of random effects models<br>
Case: Remote sensing</p></td>
<td><p>Chapter 8.5-8.7<br>
</p></td>
<td></td>
</tr>
<tr>
<td><p>4/11</p></td>
<td><p>Time series: Basics and State-Space<br>
Case: Moose population fluctuations</p></td>
<td><p>Chapters 9.1, 9.2, 9.6<br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson25_TimeSeries.pdf">Slides</a><br>
<a href="https://youtu.be/P7kzDgf2jvo">Video 1 - Time Series Intro</a><br>
<a href="https://youtu.be/k_VDZZ3ZY2Y">Video 2 - State Space Intro</a><br>
<a href="https://youtu.be/Etzod9jRU8k">Video 3 - State Space: Exponential Growth</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>4/13</p></td>
<td><p>Time series: Mark-Recapture<br>
Case: Black Noddy</p></td>
<td><p>Chapter 9.7, 9.8, 9.16 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson26b.pdf">Slides</a><br>
<a href="https://youtu.be/VfyLTJJl9tw">Video 1 - Unequal intervals and nonlinear dynamic models</a><br>
<a href="https://youtu.be/1QQnBX4VtyE">Video 2 - Mark Recapture</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>4/15</p></td>
<td><p>Time series: ARMA<br>
Case: Fire in the Everglades</p></td>
<td><p>Chapter 9.3, 9.5 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson27_ARMA.pdf">Slides</a><br>
<a href="https://youtu.be/nDYkcwGg3hA">Video 1 - Concepts & Definitions</a><br>
<a href="https://youtu.be/HWk7QZhWS28">Video 2 - Smoothing</a><br>
<a href="https://youtu.be/xKxbXoRoKaY">Video 3 - Detrending</a><br>
<a href="https://youtu.be/ySLZgyQQQ_o">Video 4 - Autocorrelation</a><br>
<a href="https://youtu.be/4X5DeBcNRUA">Video 5 - Autoregressive Models</a><br>
<a href="https://youtu.be/_dscnvJpz8A">Video 6 - ARIMA</a><br>
</p></td>
<td></td>
</tr>
<tr>
<td><p>4/18</p></td>
<td><p>Patriot's Day, No Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td><p>4/20</p></td>
<td><p>Time Series: Repeated Measures<br>
Case: Soil Respiration</p></td>
<td><p>Chapter 9.10, 9.14, 9.15 <br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson28_RepMeas.pdf">Slides</a><br>
<a href="https://youtu.be/M1nGtRAhCzM">Video 1 - Concepts</a><br>
<a href="https://youtu.be/C6R2668ibhI">Video 2 - Implementation</a><br>
<a href="https://youtu.be/dIb91u7UvRs">Video 3 - Generalization</a><br>
<a href="https://youtu.be/aUtZeEeoAdQ">Video 4 - Interventions & Change Points</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>4/22</p></td>
<td><p>Spatial: point-referenced (geostatistical) data & Kriging<br>
Case: Mapping soil moisture</p></td>
<td><p>Chapter 10.7<br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson29_Spatial.pdf">Slides</a><br>
<a href="https://youtu.be/kEfDQrSeSMQ">Video 1 - Spatial Point Pattern</a><br>
<a href="https://youtu.be/PVCMkE8MdnQ">Video 2 - Spatial Point Referenced Data</a><br>
<a href="https://youtu.be/TT4gsqXomFk">Video 3 - Spatial Smoothing</a><br>
<a href="https://youtu.be/AGt8-R8Vzq8">Video 4 - Spatial covariance & Variograms</a><br>
<a href="https://youtu.be/JGzBvSqIXM8">Video 5 - Spatial Interpolation</a><br>
<a href="https://youtu.be/aH5j1SgthDg">Video 6 - Kriging</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>4/25</p></td>
<td><p>Spatial: Markov Random Field<br>
Case: Superfund monitoring</p></td>
<td><p>Chapter 10.8<br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson30_SpatialPoint.pdf">Slides</a><br>
<a href="https://youtu.be/38iz_B_IsJY">Video 1 - Spatial Modeling Concepts</a><br>
<a href="https://youtu.be/RkHYPJBF8lw">Video 2 - Spatial Model Coding</a><br>
<a href="https://youtu.be/zgTagbhUWdA">Video 3 - Spatial Models: Prediction</a><br>
<a href="https://youtu.be/I5UaehuvnGc">Video 4 - Markov Random Fields</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>4/27</p></td>
<td><p>Spatial Basis functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td><p>4/29</p></td>
<td><p>Spatial: block-referenced data and misalignment<br>
Case: relating ozone & census data</p></td>
<td><p>Chapter 10.9<br>
<a href="http://people.bu.edu/dietze/Bayes2020/Lesson30_CAR.pdf">Slides</a><br>
<a href="https://youtu.be/_tk4i-TV3So">Video 1 - Spatial Block Data: Concepts</a><br>
<a href="https://youtu.be/gORpmlMNasY">Video 2 - Spatial Block Exploratory Stats</a><br>
<a href="https://youtu.be/nx3Uib9E-Gg">Video 3 - Conditional Autoregressive Models</a><br>
<a href="https://youtu.be/xG8RGduhjUg">Video 4 - Spatial Misalignment</a>
</p></td>
<td></td>
</tr>
<tr>
<td><p>5/1</p></td>
<td><p>Spatial: conditional autoregressive models (CAR)<br>
Case: South African biodiversity</p></td>
<td><p>Chapter 10.10</p></td>
<td></td>
</tr>
<tr>
<td><p>5/4</p></td>
<td><p>TBD</td>
<td></td>
<td></td>
</tr>
<tr>
<td><p>5/10</p></td>
<td><p><b>EXAM 4, 9-11AM</b></p></td>
<td></td>
<td><p><a href="http://people.bu.edu/dietze/Bayes2020/FinalProject.pdf"><b>FINAL PROJECT</b></a></p></td>
</tr>
</table>
<p><b> </b></p>
<p><b>Lab Syllabus</b></p>
<table border=1 cellspacing=0 cellpadding=0>
<tr>
<td width=32> <p>Lab</p> </td>
<td width=45><p>Week</p></td>
<td width=283><p>Topics</p></td>
<td width=70><p>Software</p></td>
</tr>
<tr>
<td width=32><p>1</p></td>
<td width=45><p>1/26</p></td>
<td width=283><p>Introduction to R</p></td>
<td width=70><p>R</p></td>
</tr>
<tr>
<td width=32><p>2</p></td>
<td width=45><p>2/2</p>
</td><td width=283><p>Probability distributions and sampling</p></td>
<td width=70><p>R</p></td>
</tr>
<tr>
<td width=32><p>3</p></td>
<td width=45><p>2/9</p></td>
<td width=283><p>Fire return intervals: Maximum likelihood basics</p></td>
<td width=70><p>R</p></td>
</tr>
<tr>
<td width=32><p>4</p></td>
<td width=45><p>2/16</p></td>
<td width=283><p>Ecosystem responses to CO2: ML numerical optimization</p></td>
<td width=70><p>R</p></td>
</tr>
<tr>
<td width=32><p>5</p></td>
<td width=45><p>2/23</p></td>
<td width=283><p>Forest stand characteristics: Intro to BUGS</p></td>
<td width=70><p>JAGS</p></td>
</tr>
<tr>
<td width=32><p>6</p></td>
<td width=45><p>3/2</p></td>
<td width=283><p>Regression: Gibbs sampler</p></td>
<td width=70><p>R</p></td>
</tr>
<tr>
<td width=32><p>7</p></td>
<td width=45><p>3/16</p></td>
<td width=283><p>Nonlinear plant growth: Metropolis Algorithm</p></td>
<td width=70><p>R</p></td>
</tr>
<tr>
<td width=32><p>8</p></td>
<td width=45><p>3/23</p></td>
<td width=283><p>CO2 revisited: Interval estimation and model selection</p></td>
<td width=70><p>R</p></td>
</tr>
<tr>
<td width=32><p>9</p></td>
<td width=45><p>3/30</p></td>
<td width=283><p>Understory Regeneration: Random effects</p></td>
<td width=70><p>Both</p></td>
</tr>
<tr>
<td width=32><p>10</p></td>
<td width=45><p>4/6</p></td>
<td width=283><p>Mosquito abundance: Hierarchical modeling</p></td>
<td width=70><p>JAGS</p></td>
</tr>
<tr>
<td width=32><p>11</p></td>
<td width=45><p>4/13</p></td>
<td width=283><p>Moose population fluctuations: State-space time series</p></td>
<td width=70><p>JAGS</p></td>
</tr>
<tr>
<td width=32><p></p></td>
<td width=45><p>4/20</p></td>
<td width=283><p>Wed = Mon; no lab</p></td>
<td width=70></td>
</tr>
<tr>
<td width=32><p>12</p></td>
<td width=45><p>4/27</p></td>
<td width=283><p>Peer Assessment of projects</p></td>
<td width=70><p> </p></td>
</tr>
<tr>
<td width=32><p>13</p>
</td><td width=45><p>5/4</p></td>
<td width=283><p>Ozone: Space/time exploratory data analysis</p></td>
<td width=70><p>R</p></td>
</tr>
</table>
<p><b> </b></p>
<p><b>Academic Code</b></p>
<p>It is your responsibility to know and understand the provisions of
the CAS Academic Conduct Code. Copies are available in CAS 105. Suspected cases
of academic misconduct will be referred to the Dean’s Office. See <a
href="http://www.bu.edu/academics/resources/academic-conduct-code">http://www.bu.edu/academics/resources/academic-conduct-code</a> for
conduct information for undergraduates and <a
href="http://www.bu.edu/cas/students/graduate/forms-policies-procedures/academic-discipline-procedures/">http://www.bu.edu/cas/students/graduate/forms-policies-procedures/academic-discipline-procedures/</a> for
graduate student conduct requirements.</p>
</body>
</html>