-
Notifications
You must be signed in to change notification settings - Fork 0
/
comparison_game_agent.py
404 lines (326 loc) · 15 KB
/
comparison_game_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
"""
I'm incluing this because I noticed the AlphaBetaPlayer wins more often if I modify
isolation.py to return get_legal_moves() in the same order each time (not randomized).
I added an extra function get_legal_moves_non_randomized() into isolation.py to do this.
I'm actually not sure why this works, but I ran hundreds of games overnight and it seemed
to be a very repeatable pattern.
"""
import random
from game_agent import (IsolationPlayer, SearchTimeout)
class AlphaBetaNonRandomPlayer(IsolationPlayer):
"""Game-playing agent that chooses a move using iterative deepening minimax
search with alpha-beta pruning. You must finish and test this player to
make sure it returns a good move before the search time limit expires.
"""
def get_move(self, game, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
Modify the get_move() method from the MinimaxPlayer class to implement
iterative deepening search instead of fixed-depth search.
**********************************************************************
NOTE: If time_left() < 0 when this function returns, the agent will
forfeit the game due to timeout. You must return _before_ the
timer reaches 0.
**********************************************************************
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
self.time_left = time_left
# Initialize the best move so that this function returns something
# in case the search fails due to timeout
best_move = (-1, -1)
depth = 1
# Test if first move of the game -- if so pick the center square
if len(game.get_blank_spaces()) == game.width * game.height:
return (3,3)
moves = game.get_legal_moves_non_randomized()
while depth <= self.search_depth:
try:
# The try/except block will automatically catch the exception
# raised when the timer is about to expire.
best_move = self.alphabeta(game, depth, moves)
depth+=1
except SearchTimeout:
return best_move
# Return the best move from the last completed search iteration
return best_move
def maxvalue(self, game, alpha, beta, max_depth, curr_depth):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if (max_depth==curr_depth):
return self.score(game, self)
else:
curr_depth+=1
moves = game.get_legal_moves_non_randomized(self)
if len(moves)==0:
# No legals moves left
return float("-inf")
maxv = float("-inf")
for m in moves:
val = self.minvalue(game.forecast_move(m), alpha, beta, max_depth, curr_depth)
if val>maxv:
maxv = val
if maxv >= beta:
return maxv
else:
alpha = max(alpha, maxv)
return maxv
def minvalue(self, game, alpha, beta, max_depth, curr_depth):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if (max_depth==curr_depth):
return self.score(game, self)
else:
curr_depth+=1
moves = game.get_legal_moves_non_randomized()
if len(moves)==0:
#no legal moves left for opponent
return float("+inf")
minv = float("inf")
for m in moves:
val = self.maxvalue(game.forecast_move(m), alpha, beta, max_depth, curr_depth)
if val < minv:
minv = val
if minv <= alpha:
return minv
else:
beta = min(beta, minv)
return minv
def alphabeta(self, game, depth, moves, alpha=float("-inf"), beta=float("inf")):
"""Implement depth-limited minimax search with alpha-beta pruning as
described in the lectures.
This should be a modified version of ALPHA-BETA-SEARCH in the AIMA text
https://github.com/aimacode/aima-pseudocode/blob/master/md/Alpha-Beta-Search.md
**********************************************************************
You MAY add additional methods to this class, or define helper
functions to implement the required functionality.
**********************************************************************
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
alpha : float
Alpha limits the lower bound of search on minimizing layers
beta : float
Beta limits the upper bound of search on maximizing layers
Returns
-------
(int, int)
The board coordinates of the best move found in the current search;
(-1, -1) if there are no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project tests; you cannot call any other evaluation
function directly.
(2) If you use any helper functions (e.g., as shown in the AIMA
pseudocode) then you must copy the timer check into the top of
each helper function or else your agent will timeout during
testing.
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if len(moves)==0:
return (-1, -1)
best_move = moves[0]
maxval=float("-inf")
for m in moves:
val = self.minvalue(game.forecast_move(m), alpha, beta, depth, 1)
if val>maxval:
maxval = val
best_move = m
alpha = max(alpha, maxval)
return best_move
"""
An attempt to sort the moves into an order that would help alpha-beta pruning.
I stopped using this because it didn't beat the regular AlphaBetaPlayer with
no sorting.
"""
class AlphaBetaSortingPlayer(IsolationPlayer):
"""Game-playing agent that chooses a move using iterative deepening minimax
search with alpha-beta pruning. You must finish and test this player to
make sure it returns a good move before the search time limit expires.
"""
def get_move(self, game, time_left):
"""Search for the best move from the available legal moves and return a
result before the time limit expires.
Modify the get_move() method from the MinimaxPlayer class to implement
iterative deepening search instead of fixed-depth search.
**********************************************************************
NOTE: If time_left() < 0 when this function returns, the agent will
forfeit the game due to timeout. You must return _before_ the
timer reaches 0.
**********************************************************************
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
-------
(int, int)
Board coordinates corresponding to a legal move; may return
(-1, -1) if there are no available legal moves.
"""
self.time_left = time_left
# Initialize the best move so that this function returns something
# in case the search fails due to timeout
best_move = (-1, -1)
depth = 1
# Test if first move of the game -- if so pick the center square
if len(game.get_blank_spaces()) == game.width * game.height:
return (3,3)
moves = game.get_legal_moves()
# print("Initially, moves are ", moves)
while depth <= self.search_depth:
try:
# The try/except block will automatically catch the exception
# raised when the timer is about to expire.
# print("********************Next round of iterative deepening: depth ", depth, ". Current best move is ", best_move)
best_move = self.alphabeta(game, depth, moves)
# print("At depth ", depth, " best move is ", best_move)
depth+=1
except SearchTimeout:
# print("AlphaBeta Non Sorting timed out at depth ", depth," returning move ",best_move)
return best_move
# Return the best move from the last completed search iteration
return best_move
def maxvalue(self, game, alpha, beta, max_depth, curr_depth):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if (max_depth==curr_depth):
# print(" "*curr_depth, "Depth max: Max value at depth ", curr_depth, " returning score ", self.score(game, self))
return self.score(game, self)
else:
curr_depth+=1
moves = game.get_legal_moves(self)
if len(moves)==0:
# No legals moves left
return float("-inf")
maxv = float("-inf")
for m in moves:
val = self.minvalue(game.forecast_move(m), alpha, beta, max_depth, curr_depth)
if val>maxv:
maxv = val
if maxv >= beta:
return maxv
else:
alpha = max(alpha, maxv)
# print(" "*(curr_depth-1), "Maxvalue depth ", curr_depth-1, " returning value ", maxv)
return maxv
def minvalue(self, game, alpha, beta, max_depth, curr_depth):
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
if (max_depth==curr_depth):
# print(" "*curr_depth, "Depth max: Max value at depth ", curr_depth, " returning score ", self.score(game, self))
return self.score(game, self)
else:
curr_depth+=1
moves = game.get_legal_moves()
if len(moves)==0:
#no legal moves left for opponent
return float("+inf")
minv = float("inf")
for m in moves:
val = self.maxvalue(game.forecast_move(m), alpha, beta, max_depth, curr_depth)
if val < minv:
minv = val
if minv <= alpha:
return minv
else:
beta = min(beta, minv)
# print(" "*(curr_depth-1), "Minvalue depth ", curr_depth-1, " returning value ", minv)
return minv
def alphabeta(self, game, depth, moves, alpha=float("-inf"), beta=float("inf")):
"""Implement depth-limited minimax search with alpha-beta pruning as
described in the lectures.
This should be a modified version of ALPHA-BETA-SEARCH in the AIMA text
https://github.com/aimacode/aima-pseudocode/blob/master/md/Alpha-Beta-Search.md
**********************************************************************
You MAY add additional methods to this class, or define helper
functions to implement the required functionality.
**********************************************************************
Parameters
----------
game : isolation.Board
An instance of the Isolation game `Board` class representing the
current game state
depth : int
Depth is an integer representing the maximum number of plies to
search in the game tree before aborting
alpha : float
Alpha limits the lower bound of search on minimizing layers
beta : float
Beta limits the upper bound of search on maximizing layers
Returns
-------
(int, int)
The board coordinates of the best move found in the current search;
(-1, -1) if there are no legal moves
Notes
-----
(1) You MUST use the `self.score()` method for board evaluation
to pass the project tests; you cannot call any other evaluation
function directly.
(2) If you use any helper functions (e.g., as shown in the AIMA
pseudocode) then you must copy the timer check into the top of
each helper function or else your agent will timeout during
testing.
"""
if self.time_left() < self.TIMER_THRESHOLD:
raise SearchTimeout()
# moves = game.get_legal_moves()
if len(moves)==0:
return (-1, -1)
best_move = moves[0]
maxval=float("-inf")
# for m in moves:
# val = self.minvalue(game.forecast_move(m), alpha, beta, depth, 1)
# if val>maxval:
# maxval = val
# best_move = m
# alpha = max(alpha, maxval)
maxindex = 0
for i in range(len(moves)):
# print("Testing move ", i, " of ", len(moves),": ", moves[i])
val = self.minvalue(game.forecast_move(moves[i]), alpha, beta, depth, 1)
# print("Move ", moves[i], " has value ", val)
if val>maxval:
best_move = moves[i]
moves.remove(best_move)
moves.insert(0, best_move)
maxval = val
alpha = max(alpha, maxval)
# maxindex = 0
# for i in range(len(moves)):
# print("Testing move ", i, " of ", len(moves),": ", moves[i])
# val = self.minvalue(game.forecast_move(moves[i]), alpha, beta, depth, 1)
# print("Move ", moves[i], " has value ", val)
# if val>maxval:
# best_move = moves[i]
# moves.remove(best_move)
# moves.insert(0, best_move)
# maxval = val
# alpha = max(alpha, maxval)
# print("After alphabeta call, moves are: ", moves)
return best_move