-
Notifications
You must be signed in to change notification settings - Fork 0
/
glQuat.cpp
78 lines (60 loc) · 2.48 KB
/
glQuat.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/*-----------------------------------------------------------------------------
glQuat.cpp
2006 Shamus Young
-------------------------------------------------------------------------------
Functions for dealing with Quaternions
-----------------------------------------------------------------------------*/
#include <windows.h>
#include <float.h>
#include <math.h>
#include <gl\gl.h>
#include "math.h"
#include "glTypes.h"
enum QuatPart {X, Y, Z, W};
/*-----------------------------------------------------------------------------
-----------------------------------------------------------------------------*/
GLquat glQuat (float x, float y, float z, float w)
{
GLquat result;
result.x = x;
result.y = y;
result.z = z;
result.w = w;
return result;
}
/* Convert quaternion to Euler angles (in radians). */
/*
EulerAngles Eul_FromQuat(Quat q, int order)
{
HMatrix M;
double Nq = q.x*q.x+q.y*q.y+q.z*q.z+q.w*q.w;
double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0;
double xs = q.x*s, ys = q.y*s, zs = q.z*s;
double wx = q.w*xs, wy = q.w*ys, wz = q.w*zs;
double xx = q.x*xs, xy = q.x*ys, xz = q.x*zs;
double yy = q.y*ys, yz = q.y*zs, zz = q.z*zs;
M[X][X] = 1.0 - (yy + zz); M[X][Y] = xy - wz; M[X][Z] = xz + wy;
M[Y][X] = xy + wz; M[Y][Y] = 1.0 - (xx + zz); M[Y][Z] = yz - wx;
M[Z][X] = xz - wy; M[Z][Y] = yz + wx; M[Z][Z] = 1.0 - (xx + yy);
M[W][X]=M[W][Y]=M[W][Z]=M[X][W]=M[Y][W]=M[Z][W]=0.0; M[W][W]=1.0;
return (Eul_FromHMatrix(M, order));
}
*/
GLvector glQuatToEuler (GLquat q, int order)
{
GLmatrix M;
float Nq = q.x*q.x+q.y*q.y+q.z*q.z+q.w*q.w;
float s = (Nq > 0.0f) ? (2.0f / Nq) : 0.0f;
float xs = q.x*s, ys = q.y*s, zs = q.z*s;
float wx = q.w*xs, wy = q.w*ys, wz = q.w*zs;
float xx = q.x*xs, xy = q.x*ys, xz = q.x*zs;
float yy = q.y*ys, yz = q.y*zs, zz = q.z*zs;
M.elements[X][X] = 1.0f - (yy + zz); M.elements[X][Y] = xy - wz; M.elements[X][Z] = xz + wy;
M.elements[Y][X] = xy + wz; M.elements[Y][Y] = 1.0f - (xx + zz); M.elements[Y][Z] = yz - wx;
M.elements[Z][X] = xz - wy; M.elements[Z][Y] = yz + wx; M.elements[Z][Z] = 1.0f - (xx + yy);
M.elements[W][X] = M.elements[W][Y] =
M.elements[W][Z] = M.elements[X][W] =
M.elements[Y][W] = M.elements[Z][W] = 0.0f;
M.elements[W][W] = 1.0f;
return (glMatrixToEuler(M, order));
}