-
Notifications
You must be signed in to change notification settings - Fork 22
/
diffusion.py
executable file
·84 lines (58 loc) · 2.93 KB
/
diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import torch.nn as nn
import torch.nn.functional as F
from math import atan, exp
from model import NuWave2 as model
class Diffusion(nn.Module):
def __init__(self, hparams):
super().__init__()
self.hparams = hparams
self.model = model(hparams)
self.logsnr_min = hparams.logsnr.logsnr_min
self.logsnr_max = hparams.logsnr.logsnr_max
self.logsnr_b = atan(exp(-self.logsnr_max / 2))
self.logsnr_a = atan(exp(-self.logsnr_min / 2)) - self.logsnr_b
def snr(self, time):
logsnr = - 2 * torch.log(torch.tan(self.logsnr_a * time + self.logsnr_b))
norm_nlogsnr = (self.logsnr_max - logsnr) / (self.logsnr_max - self.logsnr_min)
alpha_sq, sigma_sq = torch.sigmoid(logsnr), torch.sigmoid(-logsnr)
return logsnr, norm_nlogsnr, alpha_sq, sigma_sq
def forward(self, y, y_l, band, t, z=None):
logsnr, norm_nlogsnr, alpha_sq, sigma_sq = self.snr(t)
if z == None:
noise = self.model(y, y_l, band, norm_nlogsnr)
else:
noise = z
return noise, logsnr, (alpha_sq, sigma_sq)
def denoise(self, y, y_l, band, t, h):
noise, logsnr_t, (alpha_sq_t, sigma_sq_t) = self(y, y_l, band, t)
f_t = - self.logsnr_a * torch.tan(self.logsnr_a * t + self.logsnr_b)
g_t_sq = 2 * self.logsnr_a * torch.tan(self.logsnr_a * t + self.logsnr_b)
dzt_det = (f_t * y - 0.5 * g_t_sq * (-noise / torch.sqrt(sigma_sq_t))) * h
denoised = y - dzt_det
return denoised
def denoise_ddim(self, y, y_l, band, logsnr_t, logsnr_s, z=None):
norm_nlogsnr = (self.logsnr_max - logsnr_t) / (self.logsnr_max - self.logsnr_min)
alpha_sq_t, sigma_sq_t = torch.sigmoid(logsnr_t), torch.sigmoid(-logsnr_t)
if z == None:
noise = self.model(y, y_l, band, norm_nlogsnr)
else:
noise = z
alpha_sq_s, sigma_sq_s = torch.sigmoid(logsnr_s), torch.sigmoid(-logsnr_s)
pred = (y - torch.sqrt(sigma_sq_t) * noise) / torch.sqrt(alpha_sq_t)
denoised = torch.sqrt(alpha_sq_s) * pred + torch.sqrt(sigma_sq_s) * noise
return denoised, pred
def diffusion(self, signal, noise, s, t=None):
bsize = s.shape[0]
time = s if t is None else torch.cat([s, t], dim=0)
_, _, alpha_sq, sigma_sq = self.snr(time)
if t is not None:
alpha_sq_s, alpha_sq_t = alpha_sq[:bsize], alpha_sq[bsize:]
sigma_sq_s, sigma_sq_t = sigma_sq[:bsize], sigma_sq[bsize:]
alpha_sq_tbars = alpha_sq_t / alpha_sq_s
sigma_sq_tbars = sigma_sq_t - alpha_sq_tbars * sigma_sq_s
alpha_sq, sigma_sq = alpha_sq_tbars, sigma_sq_tbars
alpha = torch.sqrt(alpha_sq)
sigma = torch.sqrt(sigma_sq)
noised = alpha.unsqueeze(-1) * signal + sigma.unsqueeze(-1) * noise
return alpha, sigma, noised