-
Notifications
You must be signed in to change notification settings - Fork 0
/
beelink_stand.scad
86 lines (66 loc) · 3.35 KB
/
beelink_stand.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// Beelink Mini S12 Pro Vertical Desktop Stand
// 2023 Matt Klapman
// OpenSCAD units are millimeters
customSupport = 1; // set to 0 for no custom support
$fn=60; // number of resolved facets on curves
include <BOSL/constants.scad>
use <BOSL/shapes.scad>
nozzleDiameter = 0.4; // used for constructed supports
wallThickness = 8;
clearance = 0.5; // allow some space as 3D printing isn't perfect
// from a horizontal view looking at the front
miniWidth = 115.35 + clearance; // measurement left to right
miniLength = 102.35 + clearance; // measurement front to back
//mini12Height = 38.25 + clearance; // without feet
miniHeight = 39.6 + clearance; // with feet
miniRadial = 6; // corners (eyeballed)
miniLedge = 10; // from each outer edge of mini to not block vents
bottomAirGap = 10; // height off of the desk
renderHelp = 0.001; // used during development to correct visual artifacts in OpenSCAD (OK to print with this)
module stand(sideAngleFactor)
{
// sideAngleFactor is a lazy way to make a straight side (=1) or a wider base (=1.8)
topWidth = miniHeight + 2 * wallThickness;
difference()
{
translate([0, 0, 0]) rounded_prismoid(size1=[sideAngleFactor * topWidth, 1.2 * miniLength], size2=[topWidth, 0.5 * miniLength], h=bottomAirGap + 0.4 * miniWidth, r=miniRadial, $fn=24);
{
// cut out mini
translate([0, 0, bottomAirGap + miniWidth/2]) cuboid([miniHeight, miniLength, miniWidth], center=true, fillet=6, edges=EDGES_X_ALL);
// cut out hole below mini
translate([0, 0, 0]) cube([miniHeight, miniLength - 2 * miniLedge, miniWidth * 2], center=true);
// cut out bottom side vents
translate([0, 0, -renderHelp]) rounded_prismoid(size1=[4 * miniHeight, miniLength - 2 * miniLedge], size2=[4 * miniHeight, miniLength - 4 * miniLedge], h=1.0 * bottomAirGap, r=miniRadial, $fn=24);
}
}
if (customSupport != 0)
{
// add custom supports
difference()
{
union()
{
translate([0, 0, 0]) rounded_prismoid(size1=[sideAngleFactor * topWidth, 8 * nozzleDiameter], size2=[sideAngleFactor * topWidth, nozzleDiameter], h=1.0 * bottomAirGap, r=0);
translate([0, -(miniLength - 4 * miniLedge)/5, 0]) rounded_prismoid(size1=[sideAngleFactor * topWidth, 8 * nozzleDiameter], size2=[sideAngleFactor * topWidth, nozzleDiameter], h=1.0 * bottomAirGap, r=0);
translate([0, (miniLength - 4 * miniLedge)/5, 0]) rounded_prismoid(size1=[sideAngleFactor * topWidth, 8 * nozzleDiameter], size2=[sideAngleFactor * topWidth, nozzleDiameter], h=1.0 * bottomAirGap, r=0);
translate([0, 0, 1/2]) cube([sideAngleFactor * topWidth, 2 * ((miniLength - 4 * miniLedge)/5 + 8 * nozzleDiameter), 1], center=true);
}
translate([0, 0, 0]) cube([miniHeight, miniLength - 2 * miniLedge, miniWidth * 2], center=true);
}
}
}
module n100()
{
color("blue") translate([0, 0, bottomAirGap + (miniWidth - clearance)/2]) cuboid([miniHeight - clearance, miniLength - clearance, miniWidth - clearance], center=true, fillet=6, edges=EDGES_X_ALL);
}
// 1 stand
stand(1.3);
n100();
// create 2 overlapping
/*
middleGap = 6.1 * wallThickness;
translate([-middleGap/2, 0, 0]) stand(1);
translate([ middleGap/2, 0, 0]) stand(1);
translate([-middleGap/2, 0, 0]) n100();
translate([ middleGap/2, 0, 0]) n100();
*/