Skip to content
/ overview_sct Public template

Repository to collect all the references on generation of synthetic computed tomography (sCT) with deep learning/convolutional networks. Generated from Spadea MF, Maspero M et al Med. Phys. 2021

Notifications You must be signed in to change notification settings

matteomaspero/overview_sct

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 

Repository files navigation

Overview sCT

Repository to collect all the references on generation of synthetic computed tomography (sCT) with deep learning/convolutional networks. Generated from Spadea MF & Maspero M et al. Med. Phys. 2021 (in press), https://doi.org/10.1002/mp.15150, preprint at: http://arxiv.org/abs/2102.02734. This page is available at: https://matteomaspero.github.io/overview_sct/ and its Github repository is: https://github.com/matteomaspero/overview_sct/.

By the end of 2021 the table will be updated, so far all the paper up to Jan 2021 should be included, if not; please, feel free to contribute!

License

CC BY-SA 4.0

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

CC BY-SA 4.0

In short, this means that anyone, even a commercial entity may re-use the content of this page as long as it will cite our paper and the source.

Contributors

Maspero M is the owner administrator of the project. Spadea Maria Francesca and Paolo Zaffino greatly contributed to the data collection for the publication.

The following added content: ...

Make the table sortable

If you wish to extend the interaction with the tables, you can sort the columns in your favourite browser, as described here. We have tested on Chrome the following combination:

If you see any typos/mistakes

Ok, we did our best, but you got us! That can happen, but you can contribute to the accuracy of the information in this page by proposing a commit, after having forked this repository. Matteo will keep monitored the repository and update it every two months. If you wish to see some changes, just reach out; we are more than happy to hear your comments/suggestions.

MRI without dose evaluation

Tumour site train val test x-fold field [T] sequence conf arch Reg MAE [HU] PSNR [dB] SSIM others reference pub date
Abdomen 10v 10 LoO mDixon 2D pair GAN* def 61±3 CC Xu2019 2019-11-06
Abdomen 160 LoO n.a. n.a. 2D pair GAN* rig 5.1±0.5 .90±.43 (F/M)SIM IS ... Xu2020 2020-05-08
Brain 18 6x 1.5 3D T1 GRE 2D pair U-net rig 85±17 MSE ME Han2017 2017-02-13
Brain 16 LoO n.a. T1 2.5Dp patch CNN+ rig 85±9 27.3±1.1 Xiang2018 2018-03-30
Brain 15 x5 1.0 T1 Gd 2D pair GAN* def 89±10 26.6±1.2 .83±.03 tissues Emami2018 2018-06-14
Brain 98CT
84MR
10 3 3D T2 2D pair/unp GAN aff 19±3 65.4±0.9 .25±.01 Jin2019 2019-05-22
Brain 24 LoO n.a. T1 3Dp pair GAN rig 56±9 26.6±2.3 NCC, HD body Lei2019 2019-05-21
Brain 33
160
LoO n.a.
n.a.
T1b
n.a.
2D GAN yes
no
9.0±0.8
5.1±0.5
.75±0.77
.90±.43
FSIM MSIM IS SWD FID experts Xu2020 2020-05-08
Brain 28t 2 15 1.5 n.a. 2D GAN* aff 134±12 24.0±0.9 .76±.02 Yang2020 2020-11-30
Brain 28 6 1.5 T2 2D pair
2D unp
U-net
GAN
rig 65±4
94±6
28.8±0.6
26.3±0.6
.972±.004
.955±0.007
same metrics for synth MRI Li2020 2020-11-05
Brain 81 11 8x 1.5 3D T1 GRE
3D T1 GRE Gd
2D T2 SE
2D T2 FLAIR
2D U-net aff 45.4±8.5
44.6±7.4
45.7±8.8
51.2±4.5
43.0±2.0
43.4±1.2
43.4±1.2
44.9±1.2
.65±.05
.63±.03
.64±.03
.61±.04
metrics for air bone, soft tissue, DSC bones Massa2020 2020-11-27
H&N 23 10 1.5 T2 2D pair U-net def 131±24 MAE, ME soft tis./bone Wang2019 2019-11-29
H&N 28 4 8x 1.5 2D T1±Gd, T2 2D pair GAN aff 75.7±14.6 29.1±1.6 .92±.02 DSC, MAE on bone Tie2020 2020-02-03
H&N 60 30 3 T1 2D unp GAN n.a. 19.6±0.7 62.4±0.5 .78±0.2 Kearney2020 2020-03-25
H&N 7 8 LoO 1.5 3D T1, T2 2D pair GAN def 83±49 ME Largent2020 2020-03-14
H&N 10 LoO 1.5 3D T1, T2 2D pair GAN* def 42-62 RMSE, CC Qian2020 2020-03-10
H&N 32 8 5x 3 3D UTE 2D pair U-net def 104±21 DSC, spatial corr Su2020 2020-10-06
Prostate 16
22
LoO n.a. T1 2.5Dp pair CNN+ rig 85±9
43±2
27.3±1.1
33.5±0.8
Xiang2018 2018-03-30
Pelvis 20 LoO n.a. 3D T2 3Dp pair GAN* rig 51±16 24.5±2.6 NCC, Hausdorff on body Lei2019 2019-05-21
Prostate 20 5x 1.5 2D T1 TSE 2D pair
3D p pair
U-net def 41±5
38±5
DSC bone Fu2019 2019-06-20
Pelvis human
Pelvis canine
27
18
3x 3
1.5
3D T1 GRE mDixon 3Dp pair U-net def 32±8 36.5±1.6 MAE/DSC bone surf dist<0.5 mm Florkow2019 2019-10-08
Pelvis 15 4 5x 3 3D T2 2D pair CNN
U-net
def 38±6
43±9
29.5±1.2
28.2±1.6
.96±.01
.95±.01
ME, PCC Bahrami2020 2020-07-30
Pelvis 100 3 2D T2 FSE 2D unp GAN No FID Fetty2020 2020-11
Breast 14 2 LoO n.a. n.a. 2D U-net1 def DSC .74-.76 Jeon2019 2019-12-31

Super/subscripts
vvolunteers, not patients; 1to segment CT into 5-classes; amultiple combinations of Dixon images was investigated but omitted here; bdataset from http://www.med.harvard.edu/AANLIB/ ; trobustenss to training size was investigated;*comparison with other architecture has been provided; +trained in 2D on multiple view and aggregated after inference;
Abbreviations
H&N=head and neck ; val=validation; x-fold=cross-fold ;conf=configuration; arch=architecture; GRE=gradient echo; (T)SE=(turbo) spin-echo, mDixon = multi-contrast Dixon reconstruction; LoO=leave-one-out; (R)MSE=(root) meas squared error; ME=mean error; DSC=dice score coefficient; (N)CC=normalized cross correlation; FSIM, MSIM, IS, SWD, FID, PCC look up the references ;)

MRI-to-sCT with dose evaluation

Tumour site train val test x-fold field [T] sequence conf arch pair reg MAE [HU] PSNR [dB] others Plan DD [%] GPR [%] DVH others reference pub date
Liver 21 LoO 3 3D T1 GRE 3D pair GAN def 73±18 22.7±3.6 NCC p 99.4±1.03 <1% range γ2 γ1 LiuY2019 2019-06-16
Abdomen 12 4x 0.3 1.5 GRE 2D pair br> 2D unp GAN* def 90±192
94±302
27.4±1.6
27.2±2.2
x+B0 <±0.6
<±0.6
98.7±1.5%
98.5±1.6%
<±0.15 γ 3 Fu2020 2020-01-31
Abdomen 46 31 3x 3 3D T1 GRE 2.5D pair U-net syn rig 79±18 MAE, ME organs x <2Gy Liu2020 2020-06-11
Abdomen kids 54 18 12 3x 1.5 3 3D T1 GRE, T2 TSE 3Dp pair U-net def 62±13 30.0±1.8 ME, DSC tissues x
p
<0.1
<0.5
99.7±0.32
96.2±4.02
<2%
<3%
beam depth Florkow2020 2020-10-07
Abdomen 39 19 0.35 GRE 2D pair U-net def 79±18 ME tissues x+B0 <0.1 98.7±1.12 <2.5% γ3 γ1 Cusumano2020 2020-10-17
Brain 26 2x 1.5 3D T1 GRE m2D+ pair CNN rig 67±11 ME, tissues DSC, dist body x -0.1±0.3 99.8±0.72 beam γ 3 depth γ1 Dinkla2018 2018-11
Brain 40 10 1.5 3D T1 GRE Gd 2D pair CNN def 75±23 DSC x <0.2±0.5 99.23 LiuF2019 2019-03-12
Brain 54 9 14 5x 1.5 2D T1 SE Gd 2D pair GAN rig 47±11 each fold x -0.7±0.5 99.2±0.82 <1% 2D/3D γ 3 γ1 Kazemifar2019 2019-04-11
Brain 55 28 4 1.5 3D T1 GRE 2D pair
3Dp pair
U-net rig 116±26
137±32
ME x
p
>98^2,98±22
>98^2,97±32
range γ1 Neppl2019 2019-07-04
Brain 25 2 25 1.5 3D T1 GRE 3Dp pair GAN rig 55±7 ME DSC x <2 98.4±3.52 <1.65% range γ 3 γ1 Shafai2019 2019-09-30
Brain 47 13 5x 3 T1 2D pair U-net rig 81±15 ME air, tissues x 2.3±0.1 align CBCT<0.5mm Gupta2019 2019-10-25
Brain 12 2 1 LoO 3 3D T1 GRE 2D+ pair U-net rig 54±7 ME, DSC p 0.00±0.01 range tissues Spadea2019 2019-11-01
Brain 15 5x T1, T2 FLAIRc 2Dp pair GAN def 108±24 tissues x 0.7 99.2±1.02 <1% beam depth γ3 γ1 Koike2019 2019-12-10
Brain 66 11 5x 1.5 2D T1 SE Gd 2D unp GAN rig 78±11 p 0.3±0.3 99.2±1.02 <3% beam γ3 depth γ1 Kazemifar2020 2020-03-26
Brain kids 30t 10 20 3x 1.5 3 3D T1 GRE±Gd 2D+* pair GAN* rig 61±14 26.7±1.9 ME DSC SSIM x
p
-0.1±0.3
0.1±0.4
99.5±0.82
99.6±1.12
<1%
<3%
beam depth γ3 Maspero2020 2020-10-23
Brain 242m,t 81 79 3 1.5 3D T1 GRE±Gd 3Dp pair CNN
U-net
def 81±22
90±21
tissues x 0.13±0.13
0.31±0.18
99.6±0.32
99.4±0.52
<±0.15 γ 3 Andres2020 2020-11
Brain 26 15 12 1.0 T1 Gd 2D GAN def bone x <±1 <1.5% Liu2021 2021-01-07
Prostate
Rectum
Cervix
32 27
18
14
3
1.5
1.5/3
3D T1 GRE mDixon 2D pair GAN rig 60±6
56±5
59±6
ME x -0.3±0.4
-0.3±0.5
-0.1±0.3a
99.4±0.63
98.5±1.13
99.6±1.93
<1% γ2 Maspero2018 2018-09-10
Prostate 36 15 3 T2 TSE 2D pair U-net def 30±5 ME tissues x 0.16±0.09 99.42 <0.2Gy γ3 γ1 Chen2018 2018-10-20
Prostate 39 4x 3 3D T2 2D pair U-net def 33±8 ME, DSC dist body x -0.01±0.64 98.5±0.72 <3% γ3 γ1 Arabi2018 2018-10-14
Prostate 17 LoO 1.5 T2 3D patch GAN* No 51±17 24.2±2.5 NCC, bone:dist, uniform p -0.07±0.07 98±62 <1% range peak γ 3 γ1 LiuY2019b 2019-10-21
Prostate 25 14 3x 3 3D T2 TSE 2D U-net*
GAN*
def 34±8
34±8
ME tissues x <1%
<1%
99.2±11
99.1±11
<1% Largent2019 2019-12-1
Pelvis 11m 8 3 1.5 T2 TSE 2D GAN* def 49±6 ME organs x 0.7±0.4 99.2±1.02 <1.5% Boni2020 2020-04-02
Pelvis 26 15 10+19m 0.35 1.5/3 3D T2 2.5D GAN* def 41±4 31.4±1 ME MSE bone x <±1 <1.5% Fetty2020 2020-05-22
Pelvis 39 14 0.35 GRE 2D pair U-net def 54±12 ME tissues x+B0 <0.5 99.0±0.72 <1% γ3 γ1 Cusumano2020 2020-10-17
Rectum 46m 44 1.5 3D T2 2D GAN def 35±7 ME bone x <±0.8 99.8±0.12 <1% γ 3 γ1 Bird2020 2020-11-29
H&N 34 3x 1.5 3D T2 TSE 3Dp pair U-net def 75±9 ME DSC bone x -0.07±0.22 95.6±2.92 γ 3 Dinkla2019 2019-06-17
H&N 15 12 3 T1 GRE 2Dp pair* GAN* def 68±2 SSIM RMSE p <0.5 <982 <0.5 Klages2019 2019-11-16
H&N 30 15 3 T1±Gd
T2 TSEc
2D pair GAN*
U-net
rig 70±12
71±12
29.4±1.3
29.2±1.3
SSIM DSC, DRR p -0.3±0.2
-0.2±0.2
97.8±0.92
97.6±1.32
Qi2020 2020-02-06
H&N 135t 10 28 3 3D T1 GRE 2D pair
unp
GAN* def 70±9
101±8
ME, DSC tissues x -0.1±0.3
0.1±0.4
98.7±1.02
98.5±1.12
<1.5%
<1.5%
beam depth Peng2020 2020-07-03
H&N 27 3x 3 3D T1 GRE 2D+ pair GAN def 65±4 ME p <±0.2 93.5±3.4 <1.5% NTCP DSC RS γ3 Thummerer2020 2020-11-27
Breast 12t 18 LtO 1.5 3D GRE mDixon 2D
+ patch
GAN* def 94±11
103±15
NCC p <0.5 98.4±3.52 DRR dist bone Olberg2019 2019-11-16

Super/subscripts
*comparison with other architecture has been provided; 3γ3%,3mm = γ3; 2γ2%,2mm = γ2; 1 γ1%,1mm = γ1; trobustenss to training size was investigated; +trained in 2D on multiple view and aggregated after inference; c multiple combinations (also ± Dixon reconstruction, where present) of the sequences were investigated but omitted; m data from multiple centers
Abbreviations
H&N=head and neck ; val=validation; x-fold=cross-fold ;conf=configuration; arch=architecture; GRE=gradient echo; (T)SE=(turbo) spin-echo, mDixon = multi-contrast Dixon reconstruction; LoO=leave-one-out; (R)MSE=(root) meas squared error; ME=mean error; DSC=dice score coefficient; (N)CC=normalized cross correlation;

CBCT

Tumour site train val test x-fold conf arch pair reg MAE [HU] PSNR [dB] SSIM others Plan DD [%] DPR [%] GPR [%] DVH others reference pub date
Pancreas 30 LoO 3Dp pair GAN* def 56.89±13.84 28.80±2.46 .71±.032 NCC SNU x <1Gy Liu2020 2020-03-06
Brain
Pelvis
24
20
LoO 3D patch GAN rig 13±2
16±5
37.5±2.3
30.7±3.7
NCC SNU No Harms2019 2019-06-17
Prostate 16 4 5x 2D pair U-net def 50.9 .967 SNU RMSE No Kida2018 2018-04-29
Prostate 27 7 8 2D pair U-net* def 88 ME x
p
>98.41
88.53
99.52
>96.52
γ 1 DPR 2 Landry2019 2019-01-24
Prostate 18 8 4x 2D ens unp GAN No rig 87±5 ME x
p
99.9±0.32
80.5±52
95.9±2.02 <±1.5%
<1%
DPR1 DPR3 RS γ3 Kurz2019 2019-11-15
Prostate 16 4 2D pair GAN* rig SelfSSIM tissues No Kida2019 2019-12-16
Pelvis
H&N
135 15 15
10
10x 2.5D pair GAN* def 24±5
24±4
20.1±3.4
22.8±3.4
x, p <1% RS Zhang2020 2020-12-01
H&N
Lung
Breast
15
15
15
8
8
8
10
10
10
2D GAN* No rig 53±12
83±10
66±18
30.5±2.2
28.5±1.6
29.0±2.1
.81±.04
.78±.04
.76±.02
ME x 0.1±0.5
0.2±0.9
0.1±0.4
97.8±12
94.9±32
92±82
<2% γ 3 Maspero2020 2020-04-29
H&N 81 9 20 2D GAN* No def 29.85±4.94 30.65±1.36 .85±.03 RMSE phantom x 98.4±1.72 96.3±3.61 Liang2019 2019-06-10
Nasophar 50 10 10 2D U-net rig 6-27 ME organs x 0.2±0.1 95.5±1.61 <1% Li2019 2019-07-16
H&N 30 7 7 2D U-net* rig 18.98 33.26 0.8911 RMSE tissues No Chen2019 2019-12-18
H&N 30 14 2D GAN def 82±11 ME tissues x 91.0±5.32 <1Gy <1% Barateau2020 2020-07-12
H&N 22 11 3x 2D+ U-net def 36±6 ME DSC SNU p -0.1±0.3 98.1±1.22 RS γ 3 Thummerer2020 2020-04-27
H&N 50t 10 2.5D U-net rig 49 .85 SNR No Yuan2020 2020-01-24
H&N 23 LoO 3D patch GAN* rig 24.3±1.4 .80±.05 stop power p 88.42 <1% γ3 γ2 Harms2019 2019-06-17
H&N
Thorax
Pelvis
25
53
205
15
15
15
2D GAN def 77±13
94±32
42±5
ME DSC HD tissues x 91.5±4.32
76.7±17.32
88.9±9.32
95.0±2.42
93.8±5.92
98.5±1.72
<2.4
<2.6
<1
γ 3 Eckl2020 2020-11-24

Super/subscripts
*comparison with other architecture has been provided; 3γ3%,3mm = γ3; 2γ2%,2mm = γ2; 1 γ1%,1mm = γ1; trobustenss to training size was investigated; +trained in 2D on multiple view and aggregated after inference; c multiple combinations (also ± Dixon reconstruction, where present) of the sequences were investigated but omitted; m data from multiple centers
Abbreviations
H&N=head and neck ; val=validation; x-fold=cross-fold ;conf=configuration; arch=architecture; GRE=gradient echo; (T)SE=(turbo) spin-echo, mDixon = multi-contrast Dixon reconstruction; LoO=leave-one-out; (R)MSE=(root) meas squared error; ME=mean error; DSC=dice score coefficient; (N)CC=normalized cross correlation;


PET

Region train val test x-fold field [T] image contrast conf arch pair reg MAE [HU] DSC tracer PETerr [%] others reference pub date
Pelvis 10 16 3 Dixon ZTE 3D patch U-net def 18F-FDG 68Ga-PSMA RMSE SUV diff Leynes2017 2017-05-01
Head 30 10 1.5 T1 GRE Gd 2D auto-enc def .971±.005a .936±.011s .803±.021b n.a. -0.7±1.1 Liu2018 2017-10-19
Pelvis 12 6 3 T1 GRE T2 TSE 3D CNN1 def .98±.01s .79±.03b .49±.17a 18F-FDG RMSE Bradshaw2018 2018-09
Head 30p+6 8 UTE mDixon 2D U-net1 def .96±.006b 18F-FDG <1% Jang2018 2018-5-15
H&N 32
12
8
2
5
7
3 Dixon±ZTE 2D U-net rig 13.8±1.4
12.6±1.5
.76±.04b
.80±.04b
18F-FDG <3 Gong2018 2018-06-13
Pelvis 15 4 4 3 T1 GRE Dixon 2D U-net def 18F-FDG
1.8±2.4
1.7±2.0f
1.8±2.4s
3.8±3.9b
mu-map diff Torrado2019 2018-08-30
Head 23 47 3 ZTE 3D patch U-net def .81±.03b 18F-FDG -0.2±5.6 Jac Blanc-Durand2019 2019-10-07
Head kids 60 19 4 3 T1 GRE mDixon, UTE 3D U-net rig .90±.07j 18F-FET biol tumor vol, SUV Ladefoged2019 2019-01-07
Head 44 11 11 1.5 T1 GRE 2.5D U-net rig 11C-WAY 11C-DASB -0.49±1.7 synt mu-map, kin anal Spuhler2019 2019-08-30
Head 40 2 3 3D T1 GRE 3D patch GAN def 101±40 302±79b 407±228a 8±4s .80±.07b 18F-FDG 3.2±3.4 1.2±13.8b 3.2±13.6s 3.2±13.6a rel vol dif surf dist ME RMSE PSNR SSIM SUV Arabi2019 2019-07-01
Prostate 18 10 3 Dixon 2D GAN* def 68Ga-PSMA 2.4±0.5 SSIM SUV Pozaruk2020 2020-05-11
Head 35 5 3 3D T1 GRE mDixon+UTEc 2.5D U-net rig 11.94±0.01 .87±.03b 11C-PiB 18F-MK-6240 <2% Gong2020 2020-10-27
Head 32 4 3 Dixon 3D patch GAN* def 16±2% .74±.05b 18F-FDG -1.0±13 SUV Gong2020 2020-07-03
Thorax 14 LoO 3 Dixon 2D GAN* No def 68±10 18F-NaF PSNR SSIM RMSE Baydoun2020 2020-12
Body 100 28 PET, no att corrected 2D U-net Yi 111±16 .94±.01b 18F-FDG -0.6±2.0% abs err Liu2018 2018-11-12
Body 100 25 PET, no att corrected 2.5D GAN Yi 18F-FDG -0.8±8.6% SUV ME Armanious2020 2020-05-24
Body 80 39 PET, no att corrected 3D GAN Yi 109±19 .87±.03b 18F-FDG 0.1<3.0% NCC PSNR ME Dong2019 2019-11-4

Super/subscripts
*comparison with other architecture has been provided; ain air or bowel gas; bin the bony structures; sin the soft tissue; f in the fatty tissue; w in water; jexpressed in terms of Jaccard index and not DSC; iintrinsically registered: PET-CT data; pdata from another MRI sequence used as pre-training; c multiple combinations (also ± Dixon reconstruction, where present) of the sequences were investigated but omitted; Abbreviations
H&N=head and neck ; val=validation; x-fold=cross-fold ;conf=configuration; arch=architecture; GRE=gradient echo; (T)SE=(turbo) spin-echo, mDixon = multi-contrast Dixon reconstruction; LoO=leave-one-out; (R)MSE=(root) meas squared error; ME=mean error; DSC=dice score coefficient; (N)CC=normalized cross correlation; paed=paediatric

About

Repository to collect all the references on generation of synthetic computed tomography (sCT) with deep learning/convolutional networks. Generated from Spadea MF, Maspero M et al Med. Phys. 2021

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published