diff --git a/tests/test_operators.py b/tests/test_operators.py index ac48aa21..ef258804 100644 --- a/tests/test_operators.py +++ b/tests/test_operators.py @@ -5,73 +5,120 @@ from pina.operators import grad, div, laplacian -def func_vec(x): +def func_vector(x): return x**2 def func_scalar(x): - print('X') x_ = x.extract(['x']) y_ = x.extract(['y']) - mu_ = x.extract(['mu']) - return x_**2 + y_**2 + mu_**3 + z_ = x.extract(['z']) + return x_**2 + y_**2 + z_**2 -data = torch.rand((20, 3), requires_grad=True) -inp = LabelTensor(data, ['x', 'y', 'mu']) -labels = ['a', 'b', 'c'] -tensor_v = LabelTensor(func_vec(inp), labels) -tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0]) - +inp = LabelTensor(torch.rand((20, 3), requires_grad=True), ['x', 'y', 'z']) +tensor_v = LabelTensor(func_vector(inp), ['a', 'b', 'c']) +tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), ['a']) def test_grad_scalar_output(): grad_tensor_s = grad(tensor_s, inp) + true_val = 2*inp assert grad_tensor_s.shape == inp.shape assert grad_tensor_s.labels == [ f'd{tensor_s.labels[0]}d{i}' for i in inp.labels ] + assert all((grad_tensor_s - true_val == 0).flatten()) + grad_tensor_s = grad(tensor_s, inp, d=['x', 'y']) + true_val = 2*inp.extract(['x', 'y']) assert grad_tensor_s.shape == (inp.shape[0], 2) assert grad_tensor_s.labels == [ f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y'] ] + assert all((grad_tensor_s - true_val == 0).flatten()) def test_grad_vector_output(): grad_tensor_v = grad(tensor_v, inp) + true_val = torch.cat( + (2*inp.extract(['x']), + torch.zeros_like(inp.extract(['y'])), + torch.zeros_like(inp.extract(['z'])), + torch.zeros_like(inp.extract(['x'])), + 2*inp.extract(['y']), + torch.zeros_like(inp.extract(['z'])), + torch.zeros_like(inp.extract(['x'])), + torch.zeros_like(inp.extract(['y'])), + 2*inp.extract(['z']) + ), dim=1 + ) assert grad_tensor_v.shape == (20, 9) - grad_tensor_v = grad(tensor_v, inp, d=['x', 'mu']) + assert grad_tensor_v.labels == [ + f'd{j}d{i}' for j in tensor_v.labels for i in inp.labels + ] + assert all((grad_tensor_v - true_val == 0).flatten()) + + grad_tensor_v = grad(tensor_v, inp, d=['x', 'y']) + true_val = torch.cat( + (2*inp.extract(['x']), + torch.zeros_like(inp.extract(['y'])), + torch.zeros_like(inp.extract(['x'])), + 2*inp.extract(['y']), + torch.zeros_like(inp.extract(['x'])), + torch.zeros_like(inp.extract(['y'])) + ), dim=1 + ) assert grad_tensor_v.shape == (inp.shape[0], 6) + assert grad_tensor_v.labels == [ + f'd{j}d{i}' for j in tensor_v.labels for i in ['x', 'y'] + ] + assert all((grad_tensor_v - true_val == 0).flatten()) def test_div_vector_output(): - grad_tensor_v = div(tensor_v, inp) - assert grad_tensor_v.shape == (20, 1) - grad_tensor_v = div(tensor_v, inp, components=['a', 'b'], d=['x', 'mu']) - assert grad_tensor_v.shape == (inp.shape[0], 1) + div_tensor_v = div(tensor_v, inp) + true_val = 2*torch.sum(inp, dim=1).reshape(-1,1) + assert div_tensor_v.shape == (20, 1) + assert div_tensor_v.labels == [f'dadx+dbdy+dcdz'] + assert all((div_tensor_v - true_val == 0).flatten()) + + div_tensor_v = div(tensor_v, inp, components=['a', 'b'], d=['x', 'y']) + true_val = 2*torch.sum(inp.extract(['x', 'y']), dim=1).reshape(-1,1) + assert div_tensor_v.shape == (inp.shape[0], 1) + assert div_tensor_v.labels == [f'dadx+dbdy'] + assert all((div_tensor_v - true_val == 0).flatten()) def test_laplacian_scalar_output(): - laplace_tensor_s = laplacian(tensor_s, inp, components=['a'], d=['x', 'y']) + laplace_tensor_s = laplacian(tensor_s, inp) + true_val = 6*torch.ones_like(laplace_tensor_s) assert laplace_tensor_s.shape == tensor_s.shape assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"] + assert all((laplace_tensor_s - true_val == 0).flatten()) + + laplace_tensor_s = laplacian(tensor_s, inp, components=['a'], d=['x', 'y']) true_val = 4*torch.ones_like(laplace_tensor_s) + assert laplace_tensor_s.shape == tensor_s.shape + assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"] assert all((laplace_tensor_s - true_val == 0).flatten()) def test_laplacian_vector_output(): laplace_tensor_v = laplacian(tensor_v, inp) + true_val = 2*torch.ones_like(tensor_v) assert laplace_tensor_v.shape == tensor_v.shape assert laplace_tensor_v.labels == [ f'dd{i}' for i in tensor_v.labels ] + assert all((laplace_tensor_v - true_val == 0).flatten()) + laplace_tensor_v = laplacian(tensor_v, inp, components=['a', 'b'], d=['x', 'y']) + true_val = 2*torch.ones_like(tensor_v.extract(['a', 'b'])) assert laplace_tensor_v.shape == tensor_v.extract(['a', 'b']).shape assert laplace_tensor_v.labels == [ f'dd{i}' for i in ['a', 'b'] ] - true_val = 2*torch.ones_like(tensor_v.extract(['a', 'b'])) assert all((laplace_tensor_v - true_val == 0).flatten())