forked from jkalogero/scalegmn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inr_editing.py
308 lines (258 loc) · 11 KB
/
inr_editing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import torch
import yaml
import numpy as np
import os
from tqdm import trange
import torch_geometric
from einops import rearrange
from src.data import dataset
from src.utils.setup_arg_parser import setup_arg_parser
from src.scalegmn.models import ScaleGMN_equiv
from src.utils.loss import select_criterion
from src.utils.optim import setup_optimization
from src.utils.helpers import overwrite_conf, count_parameters, set_seed, mask_input, mask_hidden
from src.scalegmn.inr import BatchSiren
import wandb
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
def main(args=None):
# read config file
conf = yaml.safe_load(open(args.conf))
conf = overwrite_conf(conf, vars(args))
# only for sweeps
torch.set_float32_matmul_precision('high')
print(yaml.dump(conf, default_flow_style=False))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if conf["wandb"]:
wandb.init(config=conf, **conf["wandb_args"])
set_seed(conf['train_args']['seed'])
# =============================================================================================
# SETUP DATASET AND DATALOADER
# =============================================================================================
equiv_on_hidden = mask_hidden(conf)
get_first_layer_mask = mask_input(conf)
train_set = dataset(conf['data'],
split='train',
debug=conf["debug"],
direction=conf['scalegmn_args']['direction'],
equiv_on_hidden=equiv_on_hidden,
get_first_layer_mask=get_first_layer_mask)
conf['scalegmn_args']["layer_layout"] = train_set.get_layer_layout()
val_set = dataset(conf['data'],
split='val',
debug=conf["debug"],
direction=conf['scalegmn_args']['direction'],
equiv_on_hidden=equiv_on_hidden,
get_first_layer_mask=get_first_layer_mask)
test_set = dataset(conf['data'],
split='test',
debug=conf["debug"],
direction=conf['scalegmn_args']['direction'],
equiv_on_hidden=equiv_on_hidden,
get_first_layer_mask=get_first_layer_mask)
print(f'Len train set: {len(train_set)}')
print(f'Len val set: {len(val_set)}')
print(f'Len test set: {len(test_set)}')
inr_model = BatchSiren(**conf['inr_model']).to(device)
train_loader = torch_geometric.loader.DataLoader(
dataset=train_set,
batch_size=conf["batch_size"],
shuffle=True,
num_workers=conf["num_workers"],
pin_memory=True,
sampler=None,
)
val_loader = torch_geometric.loader.DataLoader(
dataset=val_set,
batch_size=conf["batch_size"],
shuffle=False,
)
test_loader = torch_geometric.loader.DataLoader(
dataset=test_set,
batch_size=conf["batch_size"],
shuffle=True,
num_workers=conf["num_workers"],
pin_memory=True,
)
# =============================================================================================
# DEFINE MODEL
# =============================================================================================
net = ScaleGMN_equiv(conf['scalegmn_args'])
print(net)
cnt_p = count_parameters(net=net)
if conf["wandb"]:
wandb.log({'number of parameters': cnt_p}, step=0)
for p in net.parameters():
p.requires_grad = True
net = net.to(device)
# =============================================================================================
# DEFINE LOSS
# =============================================================================================
criterion = select_criterion(conf['train_args']['loss'], {})
# =============================================================================================
# DEFINE OPTIMIZATION
# =============================================================================================
conf_opt = conf['optimization']
model_params = [p for p in net.parameters() if p.requires_grad]
optimizer, scheduler = setup_optimization(model_params, optimizer_name=conf_opt['optimizer_name'],
optimizer_args=conf_opt['optimizer_args'],
scheduler_args=conf_opt['scheduler_args'])
best_val_loss = float("inf")
best_test_results, best_val_results = None, None
test_loss = -1.0
global_step = 0
start_epoch = 0
epoch_iter = trange(start_epoch, conf['train_args']['num_epochs'])
net.train()
optimizer.zero_grad()
for epoch in epoch_iter:
for i, batch in enumerate(train_loader):
params, w_b, img, input_image = batch
params = params.to(device)
w_b = w_b.to(device)
weights = w_b.weights
biases = w_b.biases
img = img.to(device)
optimizer.zero_grad()
delta_weights, delta_biases = net(params, weights, biases)
new_weights, new_biases = residual_param_update(weights, biases, delta_weights, delta_biases)
outs = inr_model(new_weights, new_biases)
outs = rearrange(outs, "b (h w) c -> b c h w", h=conf['data']['image_size'][0])
loss = criterion(outs, img)
loss.backward()
log = {
"train/loss": loss.item(),
"global_step": global_step,
}
if conf['optimization']['clip_grad']:
grad_norm = torch.nn.utils.clip_grad_norm_(list(filter(lambda p: p.requires_grad, net.parameters())), conf['optimization']['clip_grad_max_norm'])
log["grad_norm"] = grad_norm
optimizer.step()
if scheduler[1] is not None and scheduler[1] != 'ReduceLROnPlateau':
log["lr"] = scheduler[0].get_last_lr()[0]
scheduler[0].step()
if conf["wandb"]:
if i == 0:
(
log["train/imgs/gt"],
log["train/imgs/pred"],
log["train/imgs/input"],
) = log_images(
img[: conf['log_n_imgs']],
outs[: conf['log_n_imgs']],
input_image[: conf['log_n_imgs']]
)
wandb.log(log)
epoch_iter.set_description(
f"[{epoch} {i+1}], train loss: {loss.item():.3f}, test_loss: {test_loss:.3f}"
)
global_step += 1
if (global_step + 1) % conf['train_args']['eval_every'] == 0:
val_loss_dict = evaluate(
net,
val_loader,
device,
inr_model,
img_shape=conf['data']['image_size'],
log_n_imgs=conf['log_n_imgs'],
)
test_loss_dict = evaluate(
net,
test_loader,
device,
inr_model,
img_shape=conf['data']['image_size'],
log_n_imgs=conf['log_n_imgs'],
)
val_loss = val_loss_dict["avg_loss"]
test_loss = test_loss_dict["avg_loss"]
train_loss_dict = evaluate(
net,
train_loader,
device,
inr_model,
img_shape=conf['data']['image_size'],
log_n_imgs=conf['log_n_imgs'],
num_batches=100,
)
best_val_criteria = val_loss < best_val_loss
if best_val_criteria:
best_test_results = test_loss_dict
best_val_results = val_loss_dict
best_val_loss = val_loss
if conf["wandb"]:
log = {
"train/avg_loss": train_loss_dict["avg_loss"],
"val/best_loss": best_val_results["avg_loss"],
"test/best_loss": best_test_results["avg_loss"],
**{f"val/{k}": v for k, v in val_loss_dict.items()},
**{f"test/{k}": v for k, v in test_loss_dict.items()},
"epoch": epoch,
"global_step": global_step,
}
wandb.log(log)
@torch.no_grad()
def evaluate(
model,
loader,
device,
inr_model,
img_shape=(28, 28),
log_n_imgs=0,
num_batches=None,
):
model.eval()
log_n_imgs = min(log_n_imgs, loader.batch_size)
imgs, preds, input_imgs = [], [], []
losses = []
for i, batch in enumerate(loader):
if num_batches is not None and i >= num_batches:
break
params, w_b, img, input_image = batch
params = params.to(device)
w_b = w_b.to(device)
weights = w_b.weights
biases = w_b.biases
img = img.to(device)
delta_weights, delta_biases = model(params, weights, biases)
new_weights, new_biases = residual_param_update(weights, biases, delta_weights, delta_biases)
outs = inr_model(new_weights, new_biases)
outs = rearrange(outs, "b (h w) c -> b c h w", h=img_shape[0])
loss = ((outs - img) ** 2).mean(dim=(1, 2, 3))
losses.append(loss.detach().cpu())
if i == 0 and log_n_imgs > 0:
gt_img_plots, pred_img_plots, input_img_plots = log_images(
img[:log_n_imgs],
outs[:log_n_imgs],
input_image[:log_n_imgs]
)
imgs.extend(gt_img_plots)
preds.extend(pred_img_plots)
input_imgs.extend(input_img_plots)
losses = torch.cat(losses)
losses = losses.mean()
model.train()
return {
"avg_loss": losses,
"imgs/gt": imgs,
"imgs/pred": preds,
"imgs/input": input_imgs,
}
def residual_param_update(weights, biases, delta_weights, delta_biases):
new_weights = [weights[j] + delta_weights[j] for j in range(len(weights))]
new_biases = [biases[j] + delta_biases[j] for j in range(len(weights))]
return new_weights, new_biases
def log_images(gt_images, pred_images, input_images):
_gt_images = gt_images.detach().permute(0, 2, 3, 1).cpu().numpy()
_pred_images = pred_images.detach().permute(0, 2, 3, 1).cpu().numpy()
_input_images = input_images.detach().permute(0, 2, 3, 1).cpu().numpy()
_pred_images = np.clip(_pred_images, 0.0, 1.0)
gt_img_plots = [wandb.Image(img) for img in gt_images]
pred_img_plots = [wandb.Image(img) for img in pred_images]
input_img_plots = [wandb.Image(img) for img in _input_images]
return gt_img_plots, pred_img_plots, input_img_plots
if __name__ == '__main__':
arg_parser = setup_arg_parser()
args = arg_parser.parse_args()
if isinstance(args.gpu_ids, int):
args.gpu_ids = [args.gpu_ids]
main(args=args)