-
Notifications
You must be signed in to change notification settings - Fork 23
/
depth_image_hand_fitting.py
166 lines (140 loc) · 4.44 KB
/
depth_image_hand_fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""Example of fitting a hand mesh to a depth image."""
import datetime
import glob
import json
import os
import time
from typing import List
import cv2
import deodr
from deodr import ColoredTriMesh
from imageio import imsave
import matplotlib.pyplot as plt
import numpy as np
from deodr.mesh_fitter import MeshDepthFitter
from deodr.pytorch import MeshDepthFitter as PytorchMeshDepthFitter
from deodr.tensorflow import MeshDepthFitter as TensorFlowMeshDepthFitter
def run(
dl_library: str = "none",
plot_curves: bool = False,
save_images: bool = False,
display: bool = True,
max_iter: int = 300,
n_subdivision: int = 0,
) -> List[float]:
file_folder = os.path.dirname(__file__)
depth_image = np.fliplr(
np.fromfile(os.path.join(deodr.data_path, "depth.bin"), dtype=np.float32)
.reshape(240, 320)
.astype(np.float64)
)
depth_image = depth_image[20:-20, 60:-60]
max_depth = 450
depth_image[depth_image == 0] = max_depth
depth_image = depth_image / max_depth
obj_file = os.path.join(deodr.data_path, "hand.obj")
faces, vertices = deodr.read_obj(obj_file)
mesh = ColoredTriMesh(faces.copy(), vertices=vertices, nb_colors=0).subdivise(
n_subdivision
)
euler_init = np.array([0.1, 0.1, 0.1])
translation_init = np.zeros(3)
MeshDepthFittersSelector = {
"none": MeshDepthFitter,
"pytorch": PytorchMeshDepthFitter,
"tensorflow": TensorFlowMeshDepthFitter,
}
hand_fitter: MeshDepthFitter = MeshDepthFittersSelector[dl_library]( # type: ignore
mesh.vertices, mesh.faces, euler_init, translation_init, cregu=1000
)
distortion = np.array([1, 0, 0, 0, 0])
hand_fitter.set_image(depth_image, focal=241, distortion=distortion)
hand_fitter.set_max_depth(1)
hand_fitter.set_depth_scale(110 / max_depth)
energies: List[float] = []
durations: List[float] = []
start = time.time()
iter_folder = os.path.join(file_folder, "./iterations/depth")
if not os.path.exists(iter_folder):
os.makedirs(iter_folder)
for niter in range(max_iter):
energy, synthetic_depth, diff_image = hand_fitter.step()
energies.append(energy)
durations.append(time.time() - start)
if save_images or display:
combined_image = np.column_stack(
(depth_image, synthetic_depth, 3 * diff_image)
)
if display:
cv2.imshow("animation", cv2.resize(combined_image, None, fx=2, fy=2))
if save_images:
imsave(
os.path.join(iter_folder, f"depth_hand_iter_{niter}.png"),
combined_image,
)
cv2.waitKey(1)
with open(
os.path.join(
iter_folder,
f'depth_image_fitting_result_{str(datetime.datetime.now()).replace(":", "_")}.json',
),
"w",
) as f:
json.dump(
{
"label": f"{dl_library} {datetime.datetime.now()}",
"durations": durations,
"energies": energies,
},
f,
indent=4,
)
if plot_curves:
plt.figure()
for file in glob.glob(
os.path.join(iter_folder, "depth_image_fitting_result_*.json")
):
with open(file, "r") as fp:
json_data = json.load(fp)
plt.plot(
json_data["durations"],
json_data["energies"],
label=json_data["label"],
)
plt.legend()
plt.figure()
for file in glob.glob(
os.path.join(iter_folder, "depth_image_fitting_result_*.json")
):
with open(file, "r") as fp:
json_data = json.load(fp)
plt.plot(json_data["energies"], label=json_data["label"])
plt.legend()
plt.show()
return energies
def main() -> None:
display = True
n_subdivision = 0
run(
dl_library="none",
plot_curves=False,
save_images=False,
display=display,
n_subdivision=n_subdivision,
)
run(
dl_library="pytorch",
plot_curves=False,
save_images=False,
display=display,
n_subdivision=n_subdivision,
)
run(
dl_library="tensorflow",
plot_curves=True,
save_images=False,
display=display,
n_subdivision=n_subdivision,
)
if __name__ == "__main__":
main()