[ALGORITHM]
@inproceedings{wei2016convolutional,
title={Convolutional pose machines},
author={Wei, Shih-En and Ramakrishna, Varun and Kanade, Takeo and Sheikh, Yaser},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={4724--4732},
year={2016}
}
Arch | Input Size | AP | AP50 | AP75 | AR | AR50 | ckpt | log |
---|---|---|---|---|---|---|---|---|
cpm | 256x192 | 0.623 | 0.859 | 0.704 | 0.686 | 0.903 | ckpt | log |
cpm | 384x288 | 0.650 | 0.864 | 0.725 | 0.708 | 0.905 | ckpt | log |
Arch | Input Size | Mean | [email protected] | ckpt | log |
---|---|---|---|---|---|
cpm | 368x368 | 0.876 | 0.285 | ckpt | log |
The models are pre-trained on MPII dataset only. NO test-time augmentation (multi-scale /rotation testing) is used.
Split | Arch | Input Size | Head | Sho | Elb | Wri | Hip | Knee | Ank | Mean | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub1 | cpm | 368x368 | 96.1 | 91.9 | 81.0 | 78.9 | 96.6 | 90.8 | 87.3 | 89.5 | ckpt | log |
Sub2 | cpm | 368x368 | 98.1 | 93.6 | 77.1 | 70.9 | 94.0 | 89.1 | 84.7 | 87.4 | ckpt | log |
Sub3 | cpm | 368x368 | 97.9 | 94.9 | 87.3 | 84.0 | 98.6 | 94.4 | 86.2 | 92.4 | ckpt | log |
Average | cpm | 368x368 | 97.4 | 93.5 | 81.5 | 77.9 | 96.4 | 91.4 | 86.1 | 89.8 | - | - |
Split | Arch | Input Size | Head | Sho | Elb | Wri | Hip | Knee | Ank | Mean | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub1 | cpm | 368x368 | 89.0 | 63.0 | 54.0 | 54.9 | 68.2 | 63.1 | 61.2 | 66.0 | ckpt | log |
Sub2 | cpm | 368x368 | 90.3 | 57.9 | 46.8 | 44.3 | 60.8 | 58.2 | 62.4 | 61.1 | ckpt | log |
Sub3 | cpm | 368x368 | 91.0 | 72.6 | 59.9 | 54.0 | 73.2 | 68.5 | 65.8 | 70.3 | ckpt | log |
Average | cpm | 368x368 | 90.1 | 64.5 | 53.6 | 51.1 | 67.4 | 63.3 | 63.1 | 65.7 | - | - |