-
Notifications
You must be signed in to change notification settings - Fork 23
/
decode.py
293 lines (243 loc) · 12.7 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import json
import logging
import os
import pyrouge
import tensorflow as tf
from tf_model.pointer_generator.beam_search import run_beam_search
from tf_model.pointer_generator.data import output_ids2words, show_abs_oovs, show_art_oovs, STOP_DECODING
from tf_model.pointer_generator.util import get_config, load_ckpt
import time
SECS_UNTIL_NEW_CKPT = 60 # max number of seconds before loading new checkpoint
# noinspection SpellCheckingInspection
class BeamSearchDecoder(object):
def __init__(self, model, batcher, vocab, constants):
"""
:param model: Seq2SeqAttentionModel object
:param batcher: Batcher object
:param vocab: Vocabulary object
:param constants:
"""
self._model = model
model.build_graph()
self._batcher = batcher
self._vocab = vocab
self._min_dec_steps = constants['min_dec_steps']
self._max_dec_steps = constants['max_dec_steps']
self._beam_size = constants['beam_size']
self._single_pass = constants['single_pass']
self._pointer_gen = constants['pointer_gen']
self._log_root = constants['log_root']
self._saver = tf.train.Saver() # we use this to load checkpoints for decoding
self._sess = tf.Session(config=get_config())
# Load an initial checkpoint to use for decoding
ckpt_path = load_ckpt(self._saver, self._sess, self._log_root)
if self._single_pass:
# Make a descriptive decode directory name
ckpt_name = 'ckpt-' + ckpt_path.split('-')[-1] # this is something of the form "ckpt-123456"
self._decode_dir = os.path.join(self._log_root, get_decode_dir_name(ckpt_name,
constants['data_path'],
constants['max_enc_steps'],
self._min_dec_steps,
self._max_dec_steps,
self._beam_size))
if os.path.exists(self._decode_dir):
raise Exception('single_pass decode directory %s should not already exist' % self._decode_dir)
else: # Generic decode dir name
self._decode_dir = os.path.join(constants['log_root'], 'decode')
# Make the decode dir if necessary
if not os.path.exists(self._decode_dir):
os.mkdir(self._decode_dir)
if self._single_pass:
# Make the dirs to contain output written in the correct format for pyrouge
self._rouge_ref_dir = os.path.join(self._decode_dir, 'reference')
if not os.path.exists(self._rouge_ref_dir):
os.mkdir(self._rouge_ref_dir)
self._rouge_dec_dir = os.path.join(self._decode_dir, 'decoded')
if not os.path.exists(self._rouge_dec_dir):
os.mkdir(self._rouge_dec_dir)
def decode(self):
"""
Decode examples until data is exhausted (if FLAGS.single_pass) and return, or decode
indefinitely, loading latest checkpoint at regular intervals.
:return:
"""
t0 = time.time()
counter = 0
while True:
batch = self._batcher.next_batch() # one example repeated across batch
if batch is None: # finished decoding dataset in single_pass mode
assert self._single_pass, 'Dataset exhausted, but we are not in single_pass mode'
tf.logging.info('Decoder has finished reading dataset for single_pass.')
tf.logging.info('Output has been saved in %s and %s. Now starting ROUGE eval...',
self._rouge_ref_dir, self._rouge_dec_dir)
results_dict = rouge_eval(self._rouge_ref_dir, self._rouge_dec_dir)
rouge_log(results_dict, self._decode_dir)
return
original_article = batch.original_articles[0] # string
original_abstract = batch.original_abstracts[0] # string
original_abstract_sents = batch.original_abstracts_sents[0] # list of strings
article_with_unks = show_art_oovs(original_article, self._vocab) # string
abstract_with_unks = show_abs_oovs(original_abstract, self._vocab,
(batch.art_oovs[0] if self._pointer_gen else None)) # string
# Run beam search to get best Hypothesis
best_hyp = run_beam_search(self._sess, self._model, self._vocab, batch,
self._min_dec_steps, self._max_dec_steps, self._beam_size)
# Extract the output ids from the hypothesis and convert back to words
output_ids = [int(t) for t in best_hyp.tokens[1:]]
decoded_words = output_ids2words(output_ids, self._vocab,
(batch.art_oovs[0] if self._pointer_gen else None))
# Remove the [STOP] token from decoded_words, if necessary
try:
fst_stop_idx = decoded_words.index(STOP_DECODING) # index of the (first) [STOP] symbol
decoded_words = decoded_words[:fst_stop_idx]
except ValueError:
decoded_words = decoded_words
decoded_output = ' '.join(decoded_words) # string
if self._single_pass:
# write ref summary and decoded summary to file, to eval with pyrouge later
self.write_for_rouge(original_abstract_sents, decoded_words, counter)
counter += 1 # this is how many examples we've decoded
else:
# log output to screen
print_results(article_with_unks, abstract_with_unks, decoded_output)
# write info to .json file for visualization tool
self.write_for_attnvis(article_with_unks, abstract_with_unks, decoded_words,
best_hyp.attn_dists, best_hyp.p_gens)
# Check if SECS_UNTIL_NEW_CKPT has elapsed; if so return so we can load a new checkpoint
t1 = time.time()
if t1 - t0 > SECS_UNTIL_NEW_CKPT:
tf.logging.info("We've been decoding with same checkpoint for %i seconds. " +
"Time to load new checkpoint", t1 - t0)
_ = load_ckpt(self._saver, self._sess, self._log_root)
t0 = time.time()
def write_for_rouge(self, reference_sents, decoded_words, ex_index):
"""
Write output to file in correct format for eval with pyrouge.
This is called in single_pass mode.
:param reference_sents: list of strings
:param decoded_words: list of strings
:param ex_index: (int) index with which to label the files
:return:
"""
# First, divide decoded output into sentences
decoded_sents = []
while len(decoded_words) > 0:
try:
fst_period_idx = decoded_words.index('.')
except ValueError: # there is text remaining that doesn't end in "."
fst_period_idx = len(decoded_words)
sent = decoded_words[:fst_period_idx + 1] # sentence up to and including the period
decoded_words = decoded_words[fst_period_idx + 1:] # everything else
decoded_sents.append(' '.join(sent))
# pyrouge calls a perl script that puts the data into HTML files.
# Therefore we need to make our output HTML safe.
decoded_sents = [make_html_safe(w) for w in decoded_sents]
reference_sents = [make_html_safe(w) for w in reference_sents]
# Write to file
ref_file = os.path.join(self._rouge_ref_dir, '%06d_reference.txt' % ex_index)
decoded_file = os.path.join(self._rouge_dec_dir, '%06d_decoded.txt' % ex_index)
with open(ref_file, 'w') as f:
for i, sent in enumerate(reference_sents):
f.write(sent) if i == len(reference_sents) - 1 else f.write(sent + '\n')
with open(decoded_file, 'w') as f:
for i, sent in enumerate(decoded_sents):
f.write(sent) if i == len(decoded_sents) - 1 else f.write(sent + '\n')
tf.logging.info('Wrote example %i to file' % ex_index)
def write_for_attnvis(self, article, abstract, decoded_words, attn_dists, p_gens):
"""
Write some data to json file, which can be read into the in-browser
attention visualizer tool:
https://github.com/abisee/attn_vis
:param article: original article string
:param abstract: human (correct) abstract string
:param decoded_words: list of arrays; the attention distributions
:param attn_dists: list of strings; the words of the generated summary
:param p_gens: list of scalars; the p_gen values. If not running in
pointer-generator mode, list of None.
:return:
"""
article_lst = article.split() # list of words
decoded_lst = decoded_words # list of decoded words
to_write = {
'article_lst': [make_html_safe(t) for t in article_lst],
'decoded_lst': [make_html_safe(t) for t in decoded_lst],
'abstract_str': make_html_safe(abstract),
'attn_dists': attn_dists
}
if self._pointer_gen:
to_write['p_gens'] = p_gens
output_filename = os.path.join(self._decode_dir, 'attn_vis_data.json')
with open(output_filename, 'w') as f:
json.dump(to_write, f)
tf.logging.info('Wrote visualization data to %s', output_filename)
def print_results(article, abstract, decoded_output):
""" Prints the article, the reference summary and the decoded summary to screen """
print('---------------------------------------------------------------------------')
tf.logging.info('ARTICLE: %s', article)
tf.logging.info('REFERENCE SUMMARY: %s', abstract)
tf.logging.info('GENERATED SUMMARY: %s', decoded_output)
print('---------------------------------------------------------------------------')
def make_html_safe(s):
""" Replace any angled brackets in string s to avoid interfering with HTML attention visualizer. """
s.replace('<', '<')
s.replace('>', '>')
return s
def rouge_eval(ref_dir, dec_dir):
""" Evaluate the files in ref_dir and dec_dir with pyrouge, returning results_dict """
r = pyrouge.Rouge155()
r.model_filename_pattern = '#ID#_reference.txt'
r.system_filename_pattern = '(\d+)_decoded.txt'
r.model_dir = ref_dir
r.system_dir = dec_dir
logging.getLogger('global').setLevel(logging.WARNING) # silence pyrouge logging
rouge_results = r.convert_and_evaluate()
return r.output_to_dict(rouge_results)
def rouge_log(results_dict, dir_to_write):
"""
Log ROUGE results to screen and write to file.
:param results_dict: dictionary returned by pyrouge
:param dir_to_write: directory where we will write the results to
:return:
"""
log_str = ''
for x in ['1', '2', 'l']:
log_str += '\nROUGE-%s:\n' % x
for y in ['f_score', 'recall', 'precision']:
key = 'rouge_%s_%s' % (x, y)
key_cb = key + '_cb'
key_ce = key + '_ce'
val = results_dict[key]
val_cb = results_dict[key_cb]
val_ce = results_dict[key_ce]
log_str += '%s: %.4f with confidence interval (%.4f, %.4f)\n' % (key, val, val_cb, val_ce)
tf.logging.info(log_str) # log to screen
results_file = os.path.join(dir_to_write, 'ROUGE_results.txt')
tf.logging.info('Writing final ROUGE results to %s...', results_file)
with open(results_file, 'w') as f:
f.write(log_str)
def get_decode_dir_name(ckpt_name, data_path, max_enc_steps, min_dec_steps, max_dec_steps, beam_size):
"""
Make a descriptive name for the decode dir, including the name of the checkpoint
we use to decode. This is called in single_pass mode.
:param ckpt_name:
:param data_path:
:param max_enc_steps:
:param min_dec_steps:
:param max_dec_steps:
:param beam_size:
:return:
"""
if 'train' in data_path:
dataset = 'train'
elif 'val' in data_path:
dataset = 'val'
elif 'test' in data_path:
dataset = 'test'
else:
raise ValueError('FLAGS.data_path %s should contain one of train, val or test' % data_path)
# noinspection SpellCheckingInspection
dir_name = 'decode_%s_%imaxenc_%ibeam_%imindec_%imaxdec' % \
(dataset, max_enc_steps, beam_size, min_dec_steps, max_dec_steps)
if ckpt_name is not None:
dir_name += '_%s' % ckpt_name
return dir_name