-
Notifications
You must be signed in to change notification settings - Fork 2
/
cats_vs_dogs_challenge.py
170 lines (81 loc) · 2.91 KB
/
cats_vs_dogs_challenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# In[2]:
# Initialising the CNN
classifier = Sequential()
# In[3]:
# Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
# In[4]:
# Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# In[5]:
# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# In[6]:
# Step 3 - Flattening
classifier.add(Flatten())
# In[7]:
# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
# In[8]:
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# In[9]:
# Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
# In[10]:
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
# In[11]:
test_datagen = ImageDataGenerator(rescale = 1./255)
# In[19]:
training_data_path = '....../dataset/training_set'
# In[20]:
training_data_path = '....../dataset/training_set'training_set = train_datagen.flow_from_directory(training_data_path,
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
# In[21]:
test_data_path = '....../dataset/test_set'
# In[22]:
test_set = test_datagen.flow_from_directory(test_data_path,
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
# In[23]:
classifier.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 25,
validation_data = test_set,
validation_steps = 2000)
# In[48]:
import numpy as np
from keras.preprocessing import image
test_image = image.load_img('....../dataset/Dog or Cat ? Predict/cat_or_dog_1.jpg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)
training_set.class_indices
if result[0][0] == 1:
prediction = 'dog'
else:
prediction = 'cat'
# In[49]:
prediction
# In[50]:
from IPython.display import Image
Image(filename='....../dataset/Dog or Cat ? Predict/cat_or_dog_1.jpg')
# In[ ]:
# In[ ]: