This document describes how to build and install Open vSwitch using a DPDK datapath. Open vSwitch can use the DPDK library to operate entirely in userspace.
Warning
The DPDK support of Open vSwitch is considered 'experimental'.
In addition to the requirements described in the installation guide, building Open vSwitch with DPDK will require the following:
DPDK 16.11
-
Only required when physical ports are in use
A suitable kernel
On Linux Distros running kernel version >= 3.0, only IOMMU needs to enabled via the grub cmdline, assuming you are using VFIO. For older kernels, ensure the kernel is built with
UIO
,HUGETLBFS
,PROC_PAGE_MONITOR
,HPET
,HPET_MMAP
support. If these are not present, it will be necessary to upgrade your kernel or build a custom kernel with these flags enabled.
Detailed system requirements can be found at DPDK requirements, while more detailed install information can be found in the advanced installation guide.
Download the DPDK sources, extract the file and set
DPDK_DIR
:$ cd /usr/src/ $ wget http://fast.dpdk.org/rel/dpdk-16.11.tar.xz $ tar xf dpdk-16.11.tar.xz $ export DPDK_DIR=/usr/src/dpdk-16.11 $ cd $DPDK_DIR
Configure and install DPDK
Build and install the DPDK library:
$ export DPDK_TARGET=x86_64-native-linuxapp-gcc $ export DPDK_BUILD=$DPDK_DIR/$DPDK_TARGET $ make install T=$DPDK_TARGET DESTDIR=install
If IVSHMEM support is required, use a different target:
$ export DPDK_TARGET=x86_64-ivshmem-linuxapp-gcc
OVS can be installed using different methods. For OVS to use DPDK datapath, it
has to be configured with DPDK support (--with-dpdk
).
Note
This section focuses on generic recipe that suits most cases. For distribution specific instructions, refer to one of the more relevant guides.
Ensure the standard OVS requirements, described in the installation guide, are installed.
Bootstrap, if required, as described in the installation guide.
Configure the package using the
--with-dpdk
flag:$ ./configure --with-dpdk=$DPDK_BUILD
where
DPDK_BUILD
is the path to the built DPDK library. This can be skipped if DPDK library is installed in its default location.Note
While
--with-dpdk
is required, you can pass any other configuration option described in the installation guide.Build and install OVS, as described in the installation guide.
Additional information can be found in the installation guide.
Allocate a number of 2M Huge pages:
For persistent allocation of huge pages, write to hugepages.conf file in /etc/sysctl.d:
$ echo 'vm.nr_hugepages=2048' > /etc/sysctl.d/hugepages.conf
For run-time allocation of huge pages, use the
sysctl
utility:$ sysctl -w vm.nr_hugepages=N # where N = No. of 2M huge pages
To verify hugepage configuration:
$ grep HugePages_ /proc/meminfo
Mount the hugepages, if not already mounted by default:
$ mount -t hugetlbfs none /dev/hugepages``
VFIO is prefered to the UIO driver when using recent versions of DPDK. VFIO support required support from both the kernel and BIOS. For the former, kernel version > 3.6 must be used. For the latter, you must enable VT-d in the BIOS and ensure this is configured via grub. To ensure VT-d is enabled via the BIOS, run:
$ dmesg | grep -e DMAR -e IOMMU
If VT-d is not enabled in the BIOS, enable it now.
To ensure VT-d is enabled in the kernel, run:
$ cat /proc/cmdline | grep iommu=pt $ cat /proc/cmdline | grep intel_iommu=on
If VT-d is not enabled in the kernel, enable it now.
Once VT-d is correctly configured, load the required modules and bind the NIC to the VFIO driver:
$ modprobe vfio-pci $ /usr/bin/chmod a+x /dev/vfio $ /usr/bin/chmod 0666 /dev/vfio/* $ $DPDK_DIR/tools/dpdk-devbind.py --bind=vfio-pci eth1 $ $DPDK_DIR/tools/dpdk-devbind.py --status
Open vSwitch should be started as described in the installation guide with the exception of ovs-vswitchd, which requires some
special configuration to enable DPDK functionality. DPDK configuration
arguments can be passed to ovs-vswitchd via the other_config
column of the
Open_vSwitch
table. At a minimum, the dpdk-init
option must be set to
true
. For example:
$ export DB_SOCK=/usr/local/var/run/openvswitch/db.sock $ ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true $ ovs-vswitchd unix:$DB_SOCK --pidfile --detach
There are many other configuration options, the most important of which are listed below. Defaults will be provided for all values not explicitly set.
dpdk-init
- Specifies whether OVS should initialize and support DPDK ports. This is a boolean, and defaults to false.
dpdk-lcore-mask
- Specifies the CPU cores on which dpdk lcore threads should be spawned and expects hex string (eg '0x123').
dpdk-socket-mem
- Comma separated list of memory to pre-allocate from hugepages on specific sockets.
dpdk-hugepage-dir
- Directory where hugetlbfs is mounted
vhost-sock-dir
- Option to set the path to the vhost-user unix socket files.
If allocating more than one GB hugepage (as for IVSHMEM), you can configure the amount of memory used from any given NUMA nodes. For example, to use 1GB from NUMA node 0, run:
$ ovs-vsctl --no-wait set Open_vSwitch . \ other_config:dpdk-socket-mem="1024,0"
Similarly, if you wish to better scale the workloads across cores, then
multiple pmd threads can be created and pinned to CPU cores by explicity
specifying pmd-cpu-mask
. For example, to spawn two pmd threads and pin
them to cores 1,2, run:
$ ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=6
For details on using ivshmem with DPDK, refer to the advanced installation guide.
Refer to ovs-vswitchd.conf.db(5) for additional information on configuration options.
Note
Changing any of these options requires restarting the ovs-vswitchd application
You can now use ovs-vsctl to set up bridges and other Open vSwitch features.
Bridges should be created with a datapath_type=netdev
:
$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev
Now you can add DPDK devices. OVS expects DPDK device names to start with
dpdk
and end with a portid. ovs-vswitchd should print the number of dpdk
devices found in the log file:
$ ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk $ ovs-vsctl add-port br0 dpdk1 -- set Interface dpdk1 type=dpdk
After the DPDK ports get added to switch, a polling thread continuously polls DPDK devices and consumes 100% of the core, as can be checked from 'top' and 'ps' cmds:
$ top -H $ ps -eLo pid,psr,comm | grep pmd
Creating bonds of DPDK interfaces is slightly different to creating bonds of system interfaces. For DPDK, the interface type must be explicitly set. For example:
$ ovs-vsctl add-bond br0 dpdkbond dpdk0 dpdk1 \ -- set Interface dpdk0 type=dpdk \ -- set Interface dpdk1 type=dpdk
To stop ovs-vswitchd & delete bridge, run:
$ ovs-appctl -t ovs-vswitchd exit $ ovs-appctl -t ovsdb-server exit $ ovs-vsctl del-br br0
To show current stats:
$ ovs-appctl dpif-netdev/pmd-stats-show
To clear previous stats:
$ ovs-appctl dpif-netdev/pmd-stats-clear
To show port/rxq assignment:
$ ovs-appctl dpif-netdev/pmd-rxq-show
To change default rxq assignment to pmd threads, rxqs may be manually pinned to desired cores using:
$ ovs-vsctl set Interface <iface> \ other_config:pmd-rxq-affinity=<rxq-affinity-list>
where:
<rxq-affinity-list>
::=NULL
|<non-empty-list>
<non-empty-list>
::=<affinity-pair>
|<affinity-pair>
,<non-empty-list>
<affinity-pair>
::=<queue-id>
:<core-id>
For example:
$ ovs-vsctl set interface dpdk0 options:n_rxq=4 \ other_config:pmd-rxq-affinity="0:3,1:7,3:8"
This will ensure:
- Queue #0 pinned to core 3
- Queue #1 pinned to core 7
- Queue #2 not pinned
- Queue #3 pinned to core 8
After that PMD threads on cores where RX queues was pinned will become
isolated
. This means that this thread will poll only pinned RX queues.
Warning
If there are no non-isolated
PMD threads, non-pinned
RX queues will
not be polled. Also, if provided core_id
is not available (ex. this
core_id
not in pmd-cpu-mask
), RX queue will not be polled by any PMD
thread.
DPDK 'testpmd' application can be run in the Guest VM for high speed packet forwarding between vhostuser ports. DPDK and testpmd application has to be compiled on the guest VM. Below are the steps for setting up the testpmd application in the VM. More information on the vhostuser ports can be found in the advanced install guide.
Note
Support for DPDK in the guest requires QEMU >= 2.2.0.
To being, instantiate the guest:
$ export VM_NAME=Centos-vm export GUEST_MEM=3072M $ export QCOW2_IMAGE=/root/CentOS7_x86_64.qcow2 $ export VHOST_SOCK_DIR=/usr/local/var/run/openvswitch $ qemu-system-x86_64 -name $VM_NAME -cpu host -enable-kvm \ -m $GUEST_MEM -drive file=$QCOW2_IMAGE --nographic -snapshot \ -numa node,memdev=mem -mem-prealloc -smp sockets=1,cores=2 \ -object memory-backend-file,id=mem,size=$GUEST_MEM,mem-path=/dev/hugepages,share=on \ -chardev socket,id=char0,path=$VHOST_SOCK_DIR/dpdkvhostuser0 \ -netdev type=vhost-user,id=mynet1,chardev=char0,vhostforce \ -device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynet1,mrg_rxbuf=off \ -chardev socket,id=char1,path=$VHOST_SOCK_DIR/dpdkvhostuser1 \ -netdev type=vhost-user,id=mynet2,chardev=char1,vhostforce \ -device virtio-net-pci,mac=00:00:00:00:00:02,netdev=mynet2,mrg_rxbuf=off \
Download the DPDK sourcs to VM and build DPDK:
$ cd /root/dpdk/ $ wget http://fast.dpdk.org/rel/dpdk-16.11.tar.xz $ tar xf dpdk-16.11.tar.xz $ export DPDK_DIR=/root/dpdk/dpdk-16.11 $ export DPDK_TARGET=x86_64-native-linuxapp-gcc $ export DPDK_BUILD=$DPDK_DIR/$DPDK_TARGET $ cd $DPDK_DIR $ make install T=$DPDK_TARGET DESTDIR=install
Build the test-pmd application:
$ cd app/test-pmd $ export RTE_SDK=$DPDK_DIR $ export RTE_TARGET=$DPDK_TARGET $ make
Setup huge pages and DPDK devices using UIO:
$ sysctl vm.nr_hugepages=1024 $ mkdir -p /dev/hugepages $ mount -t hugetlbfs hugetlbfs /dev/hugepages # only if not already mounted $ modprobe uio $ insmod $DPDK_BUILD/kmod/igb_uio.ko $ $DPDK_DIR/tools/dpdk-devbind.py --status $ $DPDK_DIR/tools/dpdk-devbind.py -b igb_uio 00:03.0 00:04.0
Note
vhost ports pci ids can be retrieved using:
lspci | grep Ethernet
Below are few testcases and the list of steps to be followed. Before beginning, ensure a userspace bridge has been created and two DPDK ports added:
$ ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev $ ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk $ ovs-vsctl add-port br0 dpdk1 -- set Interface dpdk1 type=dpdk
Add test flows to forward packets betwen DPDK port 0 and port 1:
# Clear current flows $ ovs-ofctl del-flows br0 # Add flows between port 1 (dpdk0) to port 2 (dpdk1) $ ovs-ofctl add-flow br0 in_port=1,action=output:2 $ ovs-ofctl add-flow br0 in_port=2,action=output:1
Transmit traffic into either port. You should see it returned via the other.
Add two dpdkvhostuser
ports to bridge br0
:
$ ovs-vsctl add-port br0 dpdkvhostuser0 \ -- set Interface dpdkvhostuser0 type=dpdkvhostuser $ ovs-vsctl add-port br0 dpdkvhostuser1 \ -- set Interface dpdkvhostuser1 type=dpdkvhostuser
Add test flows to forward packets betwen DPDK devices and VM ports:
# Clear current flows $ ovs-ofctl del-flows br0 # Add flows $ ovs-ofctl add-flow br0 in_port=1,action=output:3 $ ovs-ofctl add-flow br0 in_port=3,action=output:1 $ ovs-ofctl add-flow br0 in_port=4,action=output:2 $ ovs-ofctl add-flow br0 in_port=2,action=output:4 # Dump flows $ ovs-ofctl dump-flows br0
Create a VM using the following configuration:
configuration | values | comments |
qemu version qemu thread affinity memory cores Qcow2 image mrg_rxbuf | 2.2.0 core 5 4GB 2 CentOS7 off | n/a taskset 0x20 n/a n/a n/a n/a |
You can do this directly with QEMU via the qemu-system-x86_64
application:
$ export VM_NAME=vhost-vm $ export GUEST_MEM=3072M $ export QCOW2_IMAGE=/root/CentOS7_x86_64.qcow2 $ export VHOST_SOCK_DIR=/usr/local/var/run/openvswitch $ taskset 0x20 qemu-system-x86_64 -name $VM_NAME -cpu host -enable-kvm \ -m $GUEST_MEM -drive file=$QCOW2_IMAGE --nographic -snapshot \ -numa node,memdev=mem -mem-prealloc -smp sockets=1,cores=2 \ -object memory-backend-file,id=mem,size=$GUEST_MEM,mem-path=/dev/hugepages,share=on \ -chardev socket,id=char0,path=$VHOST_SOCK_DIR/dpdkvhostuser0 \ -netdev type=vhost-user,id=mynet1,chardev=char0,vhostforce \ -device virtio-net-pci,mac=00:00:00:00:00:01,netdev=mynet1,mrg_rxbuf=off \ -chardev socket,id=char1,path=$VHOST_SOCK_DIR/dpdkvhostuser1 \ -netdev type=vhost-user,id=mynet2,chardev=char1,vhostforce \ -device virtio-net-pci,mac=00:00:00:00:00:02,netdev=mynet2,mrg_rxbuf=off
Alternatively, you can configure the guest using libvirt. Below is an XML configuration for a 'demovm' guest that can be instantiated using virsh:
<domain type='kvm'> <name>demovm</name> <uuid>4a9b3f53-fa2a-47f3-a757-dd87720d9d1d</uuid> <memory unit='KiB'>4194304</memory> <currentMemory unit='KiB'>4194304</currentMemory> <memoryBacking> <hugepages> <page size='2' unit='M' nodeset='0'/> </hugepages> </memoryBacking> <vcpu placement='static'>2</vcpu> <cputune> <shares>4096</shares> <vcpupin vcpu='0' cpuset='4'/> <vcpupin vcpu='1' cpuset='5'/> <emulatorpin cpuset='4,5'/> </cputune> <os> <type arch='x86_64' machine='pc'>hvm</type> <boot dev='hd'/> </os> <features> <acpi/> <apic/> </features> <cpu mode='host-model'> <model fallback='allow'/> <topology sockets='2' cores='1' threads='1'/> <numa> <cell id='0' cpus='0-1' memory='4194304' unit='KiB' memAccess='shared'/> </numa> </cpu> <on_poweroff>destroy</on_poweroff> <on_reboot>restart</on_reboot> <on_crash>destroy</on_crash> <devices> <emulator>/usr/bin/qemu-kvm</emulator> <disk type='file' device='disk'> <driver name='qemu' type='qcow2' cache='none'/> <source file='/root/CentOS7_x86_64.qcow2'/> <target dev='vda' bus='virtio'/> </disk> <disk type='dir' device='disk'> <driver name='qemu' type='fat'/> <source dir='/usr/src/dpdk-16.11'/> <target dev='vdb' bus='virtio'/> <readonly/> </disk> <interface type='vhostuser'> <mac address='00:00:00:00:00:01'/> <source type='unix' path='/usr/local/var/run/openvswitch/dpdkvhostuser0' mode='client'/> <model type='virtio'/> <driver queues='2'> <host mrg_rxbuf='off'/> </driver> </interface> <interface type='vhostuser'> <mac address='00:00:00:00:00:02'/> <source type='unix' path='/usr/local/var/run/openvswitch/dpdkvhostuser1' mode='client'/> <model type='virtio'/> <driver queues='2'> <host mrg_rxbuf='off'/> </driver> </interface> <serial type='pty'> <target port='0'/> </serial> <console type='pty'> <target type='serial' port='0'/> </console> </devices> </domain>
Once the guest is configured and booted, configure DPDK packet forwarding
within the guest. To accomplish this, DPDK and testpmd application have to
be first compiled on the VM as described in Guest Setup. Once compiled, run
the test-pmd
application:
$ cd $DPDK_DIR/app/test-pmd; $ ./testpmd -c 0x3 -n 4 --socket-mem 1024 -- \ --burst=64 -i --txqflags=0xf00 --disable-hw-vlan $ set fwd mac retry $ start
When you finish testing, bind the vNICs back to kernel:
$ $DPDK_DIR/tools/dpdk-devbind.py --bind=virtio-pci 0000:00:03.0 $ $DPDK_DIR/tools/dpdk-devbind.py --bind=virtio-pci 0000:00:04.0
Note
Appropriate PCI IDs to be passed in above example. The PCI IDs can be retrieved like so:
$ $DPDK_DIR/tools/dpdk-devbind.py --status
Note
More information on the dpdkvhostuser ports can be found in the advanced installation guide.
Refer to the advanced installation guide.
Currently DPDK ports does not use HW offload functionality.
Network Interface Firmware requirements: Each release of DPDK is validated against a specific firmware version for a supported Network Interface. New firmware versions introduce bug fixes, performance improvements and new functionality that DPDK leverages. The validated firmware versions are available as part of the release notes for DPDK. It is recommended that users update Network Interface firmware to match what has been validated for the DPDK release.
The latest list of validated firmware versions can be found in the DPDK release notes.
Please report problems to [email protected].