forked from kevinlin311tw/CDCL-human-part-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference_15parts_skeletons.py
executable file
·454 lines (376 loc) · 19.6 KB
/
inference_15parts_skeletons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import os
import argparse
import sys
parser = argparse.ArgumentParser(description='loading eval params')
parser.add_argument('--gpus', metavar='N', type=int, default=1)
parser.add_argument('--model', type=str, default='./weights/model_simulated_RGB_mgpu_scaling_append.0071.h5', help='path to the weights file')
parser.add_argument('--input_folder', type=str, default='./input', help='path to the folder with test images')
parser.add_argument('--output_folder', type=str, default='./output', help='path to the output folder')
parser.add_argument('--max', type=bool, default=True)
parser.add_argument('--average', type=bool, default=False)
parser.add_argument('--scale', action='append', help='<Required> Set flag', required=True)
args = parser.parse_args()
import cv2
import math
import time
import numpy as np
import util
from config_reader import config_reader
from scipy.ndimage.filters import gaussian_filter
from keras.models import load_model
import code
import copy
import scipy.ndimage as sn
from PIL import Image
from tqdm import tqdm
from model_simulated_RGB101 import get_testing_model_resnet101
from human_seg.human_seg_gt import human_seg_combine_argmax
right_part_idx = [2, 3, 4, 8, 9, 10, 14, 16]
left_part_idx = [5, 6, 7, 11, 12, 13, 15, 17]
human_part = [0,1,2,4,3,6,5,8,7,10,9,12,11,14,13]
human_ori_part = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]
seg_num = 15 # current model supports 15 parts only
# find connection in the specified sequence, center 29 is in the position 15
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
[1, 16], [16, 18], [3, 17], [6, 18]]
# the middle joints heatmap correpondence
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
[55, 56], [37, 38], [45, 46]]
# visualize
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0],
[0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255],
[85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
ori_paf_idx = [12, 13, 20, 21, 14, 15, 16, 17, 22, 23, 24, 25, 0, 1, 2, 3, \
4, 5, 6, 7, 8, 9, 10, 11, 28, 29, 30, 31, 34,35, 32, 33, 36, 37, 18, 19, 26, 27]
flip_paf_idx = [20, 21, 12, 13, 22, 23, 24, 25, 14, 15, 16, 17, 6, 7, 8, 9, \
10, 11, 0, 1, 2, 3, 4, 5, 28, 29, 32, 33, 36, 37, 30, 31, 34,35,26, 27,18, 19]
x_paf_idx = [20, 12, 22, 24, 14, 16, 6, 8, \
10, 0, 2, 4, 28, 32, 36, 30, 34,26,18]
def recover_flipping_output(oriImg, heatmap_ori_size, paf_ori_size, part_ori_size):
heatmap_ori_size = heatmap_ori_size[:, ::-1, :]
heatmap_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
heatmap_flip_size[:,:,left_part_idx] = heatmap_ori_size[:,:,right_part_idx]
heatmap_flip_size[:,:,right_part_idx] = heatmap_ori_size[:,:,left_part_idx]
heatmap_flip_size[:,:,0:2] = heatmap_ori_size[:,:,0:2]
paf_ori_size = paf_ori_size[:, ::-1, :]
paf_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
paf_flip_size[:,:,ori_paf_idx] = paf_ori_size[:,:,flip_paf_idx]
paf_flip_size[:,:,x_paf_idx] = paf_flip_size[:,:,x_paf_idx]*-1
part_ori_size = part_ori_size[:, ::-1, :]
part_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 15))
part_flip_size[:,:,human_ori_part] = part_ori_size[:,:,human_part]
return heatmap_flip_size, paf_flip_size, part_flip_size
def recover_flipping_output2(oriImg, part_ori_size):
part_ori_size = part_ori_size[:, ::-1, :]
part_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 15))
part_flip_size[:,:,human_ori_part] = part_ori_size[:,:,human_part]
return part_flip_size
def part_thresholding(seg_argmax):
background = 0.6
head = 0.5
torso = 0.8
rightfoot = 0.55
leftfoot = 0.55
leftthigh = 0.55
rightthigh = 0.55
leftshank = 0.55
rightshank = 0.55
rightupperarm = 0.55
leftupperarm = 0.55
rightforearm = 0.55
leftforearm = 0.55
lefthand = 0.55
righthand = 0.55
part_th = [background, head, torso, leftupperarm ,rightupperarm, leftforearm, rightforearm, lefthand, righthand, leftthigh, rightthigh, leftshank, rightshank, leftfoot, rightfoot]
th_mask = np.zeros(seg_argmax.shape)
for indx in range(15):
part_prediction = (seg_argmax==indx)
part_prediction = part_prediction*part_th[indx]
th_mask += part_prediction
return th_mask
def process (input_image, params, model_params):
input_scale = 1.0
oriImg = cv2.imread(input_image)
flipImg = cv2.flip(oriImg, 1)
oriImg = (oriImg / 256.0) - 0.5
flipImg = (flipImg / 256.0) - 0.5
multiplier = [x * model_params['boxsize'] / oriImg.shape[0] for x in params['scale_search']]
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
seg_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 15))
segmap_scale1 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale2 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale3 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale4 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale5 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale6 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale7 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
segmap_scale8 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num))
for m in range(len(multiplier)):
scale = multiplier[m]*input_scale
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
pad = [ 0,
0,
(imageToTest.shape[0] - model_params['stride']) % model_params['stride'],
(imageToTest.shape[1] - model_params['stride']) % model_params['stride']
]
imageToTest_padded = np.pad(imageToTest, ((0, pad[2]), (0, pad[3]), (0, 0)), mode='constant', constant_values=((0, 0), (0, 0), (0, 0)))
input_img = imageToTest_padded[np.newaxis, ...]
print( "\tActual size fed into NN: ", input_img.shape)
output_blobs = model.predict(input_img)
heatmap = np.squeeze(output_blobs[1]) # output 1 is heatmaps
heatmap = cv2.resize(heatmap, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3],
:]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
paf = np.squeeze(output_blobs[0]) # output 0 is PAFs
paf = cv2.resize(paf, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
seg = np.squeeze(output_blobs[2])
seg = cv2.resize(seg, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
seg = seg[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
seg = cv2.resize(seg, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
if m==0:
segmap_scale1 = seg
elif m==1:
segmap_scale2 = seg
elif m==2:
segmap_scale3 = seg
elif m==3:
segmap_scale4 = seg
# flipping
for m in range(len(multiplier)):
scale = multiplier[m]
imageToTest = cv2.resize(flipImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
pad = [ 0,
0,
(imageToTest.shape[0] - model_params['stride']) % model_params['stride'],
(imageToTest.shape[1] - model_params['stride']) % model_params['stride']
]
imageToTest_padded = np.pad(imageToTest, ((0, pad[2]), (0, pad[3]), (0, 0)), mode='constant', constant_values=((0, 0), (0, 0), (0, 0)))
input_img = imageToTest_padded[np.newaxis, ...]
print( "\tActual size fed into NN: ", input_img.shape)
output_blobs = model.predict(input_img)
# extract outputs, resize, and remove padding
heatmap = np.squeeze(output_blobs[1]) # output 1 is heatmaps
heatmap = cv2.resize(heatmap, (0, 0), fx=model_params['stride'], fy=model_params['stride'],interpolation=cv2.INTER_CUBIC)
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
paf = np.squeeze(output_blobs[0]) # output 0 is PAFs
paf = cv2.resize(paf, (0, 0), fx=model_params['stride'], fy=model_params['stride'],interpolation=cv2.INTER_CUBIC)
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
seg = np.squeeze(output_blobs[2])
seg = cv2.resize(seg, (0, 0), fx=model_params['stride'], fy=model_params['stride'],
interpolation=cv2.INTER_CUBIC)
seg = seg[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
seg = cv2.resize(seg, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
heatmap_recover, paf_recover, seg_recover = recover_flipping_output(oriImg, heatmap, paf, seg)
heatmap_avg = heatmap_avg + heatmap_recover
paf_avg = paf_avg + paf_recover
if m==0:
segmap_scale5 = seg_recover
elif m==1:
segmap_scale6 = seg_recover
elif m==2:
segmap_scale7 = seg_recover
elif m==3:
segmap_scale8 = seg_recover
heatmap_avg = heatmap_avg / (len(multiplier)*2)
paf_avg = paf_avg / (len(multiplier)*2)
segmap_a = np.maximum(segmap_scale1,segmap_scale2)
segmap_b = np.maximum(segmap_scale4,segmap_scale3)
segmap_c = np.maximum(segmap_scale5,segmap_scale6)
segmap_d = np.maximum(segmap_scale7,segmap_scale8)
seg_ori = np.maximum(segmap_a, segmap_b)
seg_flip = np.maximum(segmap_c, segmap_d)
seg_avg = np.maximum(seg_ori, seg_flip)
all_peaks = []
peak_counter = 0
for part in range(18):
map_ori = heatmap_avg[:, :, part]
map = gaussian_filter(map_ori, sigma=3)
map_left = np.zeros(map.shape)
map_left[1:, :] = map[:-1, :]
map_right = np.zeros(map.shape)
map_right[:-1, :] = map[1:, :]
map_up = np.zeros(map.shape)
map_up[:, 1:] = map[:, :-1]
map_down = np.zeros(map.shape)
map_down[:, :-1] = map[:, 1:]
peaks_binary = np.logical_and.reduce(
(map >= map_left, map >= map_right, map >= map_up, map >= map_down, map > params['thre1']))
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
id = range(peak_counter, peak_counter + len(peaks))
peaks_with_score_and_id = [peaks_with_score[i] + (id[i],) for i in range(len(id))]
all_peaks.append(peaks_with_score_and_id)
peak_counter += len(peaks)
connection_all = []
special_k = []
mid_num = 10
for k in range(len(mapIdx)):
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
candA = all_peaks[limbSeq[k][0] - 1]
candB = all_peaks[limbSeq[k][1] - 1]
nA = len(candA)
nB = len(candB)
indexA, indexB = limbSeq[k]
if (nA != 0 and nB != 0):
connection_candidate = []
for i in range(nA):
for j in range(nB):
vec = np.subtract(candB[j][:2], candA[i][:2])
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
# failure case when 2 body parts overlaps
if norm == 0:
continue
vec = np.divide(vec, norm)
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
vec_x = np.array(
[score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
for I in range(len(startend))])
vec_y = np.array(
[score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
for I in range(len(startend))])
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
0.5 * oriImg.shape[0] / norm - 1, 0)
criterion1 = len(np.nonzero(score_midpts > params['thre2'])[0]) > 0.8 * len(
score_midpts)
criterion2 = score_with_dist_prior > 0
if criterion1 and criterion2:
connection_candidate.append([i, j, score_with_dist_prior,
score_with_dist_prior + candA[i][2] + candB[j][2]])
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
connection = np.zeros((0, 5))
for c in range(len(connection_candidate)):
i, j, s = connection_candidate[c][0:3]
if (i not in connection[:, 3] and j not in connection[:, 4]):
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
if (len(connection) >= min(nA, nB)):
break
connection_all.append(connection)
else:
special_k.append(k)
connection_all.append([])
# last number in each row is the total parts number of that person
# the second last number in each row is the score of the overall configuration
subset = -1 * np.ones((0, 20))
candidate = np.array([item for sublist in all_peaks for item in sublist])
for k in range(len(mapIdx)):
if k not in special_k:
partAs = connection_all[k][:, 0]
partBs = connection_all[k][:, 1]
indexA, indexB = np.array(limbSeq[k]) - 1
for i in range(len(connection_all[k])): # = 1:size(temp,1)
found = 0
subset_idx = [-1, -1]
for j in range(len(subset)): # 1:size(subset,1):
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
subset_idx[found] = j
found += 1
if found == 1:
j = subset_idx[0]
if (subset[j][indexB] != partBs[i]):
subset[j][indexB] = partBs[i]
subset[j][-1] += 1
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
elif found == 2: # if found 2 and disjoint, merge them
j1, j2 = subset_idx
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
if len(np.nonzero(membership == 2)[0]) == 0: # merge
subset[j1][:-2] += (subset[j2][:-2] + 1)
subset[j1][-2:] += subset[j2][-2:]
subset[j1][-2] += connection_all[k][i][2]
subset = np.delete(subset, j2, 0)
else: # as like found == 1
subset[j1][indexB] = partBs[i]
subset[j1][-1] += 1
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
# if find no partA in the subset, create a new subset
elif not found and k < 17:
row = -1 * np.ones(20)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = 2
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + \
connection_all[k][i][2]
subset = np.vstack([subset, row])
# delete some rows of subset which has few parts occur
deleteIdx = []
for i in range(len(subset)):
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
deleteIdx.append(i)
subset = np.delete(subset, deleteIdx, axis=0)
canvas = cv2.imread(input_image)
'''
for i in range(18):
for j in range(len(all_peaks[i])):
cv2.circle(canvas, all_peaks[i][j][0:2], 4, colors[i], thickness=-1)
'''
stickwidth = 4
for i in range(17):
for n in range(len(subset)):
index = subset[n][np.array(limbSeq[i]) - 1]
if -1 in index:
continue
cur_canvas = canvas.copy()
Y = candidate[index.astype(int), 0]
X = candidate[index.astype(int), 1]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0,
360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
people = []
subset_int = subset.astype(int)
for i in range(len(subset_int)):
people.append([])
for j in range(18):
if subset_int[i][j] == -1:
people[-1].append([-1, -1])
else:
people[-1].append([candidate[subset_int[i][j], 0], candidate[subset_int[i][j], 1]])
# code.interact(local=locals())
return canvas, heatmap_avg, paf_avg, people, seg_avg
if __name__ == '__main__':
args = parser.parse_args()
keras_weights_file = args.model
print('start processing...')
# load model
model = get_testing_model_resnet101()
model.load_weights(keras_weights_file)
params, model_params = config_reader()
scale_list = []
for item in args.scale:
scale_list.append(float(item))
params['scale_search'] = scale_list
# generate image with body parts
for filename in os.listdir(args.input_folder):
if filename.endswith(".png") or filename.endswith(".jpg"):
print(args.input_folder+'/'+filename)
canvas, heatmap, paf, people, seg = process(args.input_folder+'/'+filename, params, model_params)
cv2.imwrite(args.output_folder + '/sk_' + filename, canvas)
seg_argmax = np.argmax(seg, axis=-1)
seg_max = np.max(seg, axis=-1)
th_mask = part_thresholding(seg_argmax)
seg_max_thres = (seg_max > 0.1).astype(np.uint8)
seg_argmax *= seg_max_thres
seg_canvas = human_seg_combine_argmax(seg_argmax)
cur_canvas = cv2.imread(args.input_folder+'/'+filename)
canvas = cv2.addWeighted(seg_canvas, 0.6, cur_canvas, 0.4, 0)
filename = '%s/%s.jpg'%(args.output_folder,'seg_'+filename)
cv2.imwrite(filename, canvas)