-
Notifications
You must be signed in to change notification settings - Fork 9
/
day15.rs
129 lines (114 loc) · 5.05 KB
/
day15.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
//! # Beacon Exclusion Zone
use crate::util::hash::*;
use crate::util::iter::*;
use crate::util::parse::*;
use crate::util::point::*;
use std::ops::Range;
pub struct Input {
sensor: Point,
beacon: Point,
manhattan: i32,
}
pub fn parse(input: &str) -> Vec<Input> {
fn helper([x1, y1, x2, y2]: [i32; 4]) -> Input {
let sensor = Point::new(x1, y1);
let beacon = Point::new(x2, y2);
let manhattan = sensor.manhattan(beacon);
Input { sensor, beacon, manhattan }
}
input.iter_signed().chunk::<4>().map(helper).collect()
}
/// The example uses y=10 but the real data uses y=2000000, so break out the logic
/// into a separate function to enable integration testing.
pub fn part1(input: &[Input]) -> i32 {
part1_testable(input, 2_000_000)
}
/// A beacon cannot be located with the the radius of a sensor unless it is the closest beacon.
///
/// We first convert each scanner's diamond shaped area into a one dimensional range at the
/// specified row. By sorting the ranges, we can quickly calculate the total number of distinct
/// ranges where another beacon cannot exist, only counting overlapping areas once.
///
/// Beacons can also not be located at the same position as another beacon so we then also discount
/// any beacon located exactly on the specified row.
pub fn part1_testable(input: &[Input], row: i32) -> i32 {
// Converts the "diamond" shaped area of each scanner into a one dimensional row.
// If the scanner's range does not reach the specified row then return `None`.
fn build_range(input: &Input, row: i32) -> Option<Range<i32>> {
let Input { sensor, manhattan, .. } = input;
let extra = manhattan - (sensor.y - row).abs();
(extra >= 0).then(|| (sensor.x - extra)..(sensor.x + extra))
}
// Returns the x position off all beacons that are located on the specified row
// or `None`.
fn build_beacons(input: &Input, row: i32) -> Option<i32> {
let Input { beacon, .. } = input;
(beacon.y == row).then_some(beacon.x)
}
// Sort the ranges first
let mut ranges: Vec<_> = input.iter().filter_map(|i| build_range(i, row)).collect();
ranges.sort_unstable_by_key(|r| r.start);
let mut total = 0;
let mut max = i32::MIN;
// Compare each range to the next
for Range { start, end } in ranges {
if start > max {
// If there is no overlap with the previous range, then add the entire length.
total += end - start + 1;
max = end;
} else {
// If some part of the range overlaps, then only add any extra length.
// (it's possible that there is no extra length)
total += (end - max).max(0);
max = max.max(end);
}
}
let beacons: FastSet<_> = input.iter().filter_map(|i| build_beacons(i, row)).collect();
total - (beacons.len() as i32)
}
/// Similar to part one, the logic is broken out into a separate function to enable testing.
pub fn part2(input: &[Input]) -> u64 {
part2_testable(input, 4_000_000)
}
/// The trick to solving this efficiently is to first *rotate* the corners of the diamond
/// scanner shape by 45 degrees. This tranforms them into squares that make it much easier
/// to find the missing distress beacon.
///
/// Of the entire 4000000 by 4000000 area the missing beacon must be located in the only
/// square area not covered by a scanner.
pub fn part2_testable(input: &[Input], size: i32) -> u64 {
let mut top = FastSet::new();
let mut left = FastSet::new();
let mut bottom = FastSet::new();
let mut right = FastSet::new();
// Rotate points clockwise by 45 degrees, scale by √2 and extend edge by 1.
// This transform each sensor into an axis aligned bounding box.
// The distress beacon is located where the top, left, bottom and right
// edges of 4 separate bounding boxes intersect.
for Input { sensor, manhattan, .. } in input {
top.insert(sensor.x + sensor.y - manhattan - 1);
left.insert(sensor.x - sensor.y - manhattan - 1);
bottom.insert(sensor.x + sensor.y + manhattan + 1);
right.insert(sensor.x - sensor.y + manhattan + 1);
}
let horizontal: Vec<_> = top.intersection(&bottom).collect();
let vertical: Vec<_> = left.intersection(&right).collect();
let range = 0..(size + 1);
for &&x in &vertical {
for &&y in &horizontal {
// Rotate intersection point counter clockwise and scale by 1 / √2
// to return to original coordinates.
let point = Point::new((x + y) / 2, (y - x) / 2);
// As we're mixing overlaps from different boxes there may some spurious false
// positives, so double check all points are within the specified area
// and outside the range of all scanners.
if range.contains(&point.x)
&& range.contains(&point.y)
&& input.iter().all(|i| i.sensor.manhattan(point) > i.manhattan)
{
return 4_000_000 * (point.x as u64) + (point.y as u64);
}
}
}
unreachable!()
}