-
Notifications
You must be signed in to change notification settings - Fork 23
/
twitter_sentiment.py
43 lines (39 loc) · 1.17 KB
/
twitter_sentiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import tweepy
from textblob import TextBlob
import csv
import re
import sys
import pandas as pd
consumer_key='YOUR CONSUMER KEY'
consumer_secret='YOUR CONSUMER SECRET KEY'
access_token_key='YOUR ACCESS TOKEN'
access_token_secret='YOUR SECRET ACCESS TOKEN'
auth=tweepy.OAuthHandler(consumer_key,consumer_secret)
auth.set_access_token(access_token_key,access_token_secret)
api=tweepy.API(auth)
topicname='Football'
pubic_tweets=api.search(topicname)
unwanted_words=['@','RT',':','https','http']
symbols=['@','#']
data=[]
for tweet in pubic_tweets:
text=tweet.text
textWords=text.split()
#print (textWords)
cleanedTweet=' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)|(RT)", " ", text).split())
print (cleanedTweet)
#print (TextBlob(cleanedTweet).tags)
analysis= TextBlob(cleanedTweet)
print (analysis.sentiment)
polarity = 'Positive'
if(analysis.sentiment.polarity < 0):
polarity = 'Negative'
if(0<=analysis.sentiment.polarity <=0.2):
polarity = 'Neutral'
#print (polarity)
dic={}
dic['Sentiment']=polarity
dic['Tweet']=cleanedTweet
data.append(dic)
df=pd.DataFrame(data)
df.to_csv('analysis1.csv')