forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
function_schema.cpp
607 lines (554 loc) · 19.3 KB
/
function_schema.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
#include <ATen/core/function_schema.h>
#include <iostream>
#include <stack>
#include <utility>
namespace c10 {
void FunctionSchema::dump() const {
std::cout << *this << "\n";
}
const std::vector<Argument>& FunctionSchema::getCorrectList(SchemaArgType type) const {
if (type == SchemaArgType::input) {
return arguments();
} else {
return returns();
}
}
FunctionSchema FunctionSchema::cloneWithRealTypes(bool with_symint) const {
auto alwaysCloneWithRealTypes = [&](const Argument& a) {
return a.cloneWithType(a.real_type());
};
auto cloneWithRealTypes = [&](const Argument& a) {
if (with_symint) {
return a.cloneWithType(a.real_type());
}
// Don't use real type if it looks like a SymInt
// NB: keep this in sync with unpackSymInt in KernelFunction_impl.h
if (
*a.real_type() == *getTypePtr<c10::SymInt>() ||
*a.real_type() == *getTypePtr<std::optional<c10::SymInt>>() ||
*a.real_type() == *getTypePtr<c10::SymIntArrayRef>() ||
*a.real_type() == *getTypePtr<at::OptionalSymIntArrayRef>()
) {
// Keep the fake type
return a.cloneWithType(a.type());
} else {
return a.cloneWithType(a.real_type());
}
};
std::vector<Argument> new_arguments, new_returns;
std::transform(arguments().begin(), arguments().end(), std::back_inserter(new_arguments), cloneWithRealTypes);
// NB: SymInt returns are always SymInt
std::transform(returns().begin(), returns().end(), std::back_inserter(new_returns), alwaysCloneWithRealTypes);
return FunctionSchema(
name(),
overload_name(),
std::move(new_arguments),
std::move(new_returns),
is_vararg(),
is_varret());
}
bool FunctionSchema::canAliasTypeSetsAlias(const std::optional<AliasTypeSet> &lhs, const std::optional<AliasTypeSet> &rhs) const {
if (!lhs || !rhs) {
return false;
}
for (const TypePtr& lhsType : *lhs) {
for (const TypePtr& rhsType : *rhs) {
if (lhsType == rhsType) {
return true;
}
}
}
return false;
}
std::optional<AliasTypeSet> FunctionSchema::getAliasTypeSetContainedTypes(const std::optional<AliasTypeSet> &aliasTypeSet) const {
if (!aliasTypeSet) {
return std::nullopt;
}
std::unordered_set<TypePtr> containedTypes;
std::stack<TypePtr> typeStack;
// Push all 1st level contained types into the stack.
for (const TypePtr& type: *aliasTypeSet) {
for (const TypePtr& containedType : type->containedTypes()){
typeStack.push(containedType);
}
}
// process all further level contained types.
while (!typeStack.empty()) {
TypePtr current = typeStack.top();
typeStack.pop();
if (!containedTypes.count(current)) {
for (const TypePtr& containedType : current->containedTypes()) {
typeStack.push(containedType);
}
}
containedTypes.insert(current);
}
return AliasTypeSet(containedTypes.begin(), containedTypes.end());
}
std::optional<AliasTypeSet> FunctionSchema::mapTypeToAliasTypeSet(const TypePtr& type) const {
switch(type->kind()) {
case TypeKind::ListType:
case TypeKind::DictType:
case TypeKind::ClassType:
case TypeKind::TensorType:
return AliasTypeSet {c10::unshapedType(type)};
case TypeKind::UnionType: {
AliasTypeSet mutable_types;
for (const TypePtr& inner :
type->expectRef<UnionType>().containedTypes()) {
if (auto maybe_inner_types = mapTypeToAliasTypeSet(inner)) {
mutable_types.insert(
mutable_types.end(),
(*maybe_inner_types).begin(),
(*maybe_inner_types).end());
}
}
if (mutable_types.empty()) {
return std::nullopt;
}
return mutable_types;
}
case TypeKind::AnyType:
return {AliasTypeSet{type}};
case TypeKind::OptionalType: {
auto inner = type->castRaw<OptionalType>()->getElementType();
return mapTypeToAliasTypeSet(inner);
}
case TypeKind::TupleType: {
AliasTypeSet mutable_types;
for (const TypePtr& inner : type->expectRef<TupleType>().elements()) {
if (auto maybe_inner_types = mapTypeToAliasTypeSet(inner)) {
mutable_types.insert(
mutable_types.end(),
(*maybe_inner_types).begin(),
(*maybe_inner_types).end());
}
}
if (mutable_types.empty()) {
return std::nullopt;
}
return {AliasTypeSet{TupleType::create(std::move(mutable_types))}};
}
default:
return std::nullopt;
}
}
bool FunctionSchema::may_alias(const SchemaArgument& lhs, const SchemaArgument& rhs) const {
TORCH_INTERNAL_ASSERT(
(lhs.index < getCorrectList(lhs.type).size()),
"Invalid index for schema.");
TORCH_INTERNAL_ASSERT(
(rhs.index < getCorrectList(rhs.type).size()),
"Invalid index for schema.");
const Argument lhsArg = getCorrectList(lhs.type)[lhs.index];
const Argument rhsArg = getCorrectList(rhs.type)[rhs.index];
std::optional<AliasTypeSet> lhsTypes = mapTypeToAliasTypeSet(lhsArg.type());
std::optional<AliasTypeSet> rhsTypes = mapTypeToAliasTypeSet(rhsArg.type());
// Check to see if lhs and rhs have the same alias set
if (canAliasTypeSetsAlias(lhsTypes, rhsTypes)) {
if (lhsArg.alias_info() && rhsArg.alias_info()) {
for (const auto& lhsSet : lhsArg.alias_info()->afterSets()) {
for (const auto& rhsSet : rhsArg.alias_info()->afterSets()) {
if (lhsSet == rhsSet) {
return true;
}
}
}
}
}
return false;
}
bool FunctionSchema::may_contain_alias(const SchemaArgument& lhs, const SchemaArgument& rhs, bool bidirectional) const {
bool may_alias_result = may_alias(lhs, rhs);
if (may_alias_result) {
return true;
}
const c10::Argument lhsArg = getCorrectList(lhs.type)[lhs.index];
const c10::Argument rhsArg = getCorrectList(rhs.type)[rhs.index];
std::optional<AliasTypeSet> lhsTypes = mapTypeToAliasTypeSet(lhsArg.type());
std::optional<AliasTypeSet> rhsTypes = mapTypeToAliasTypeSet(rhsArg.type());
std::optional<AliasTypeSet> lhsContainedTypes = getAliasTypeSetContainedTypes(lhsTypes);
std::optional<AliasTypeSet> rhsContainedTypes = getAliasTypeSetContainedTypes(rhsTypes);
// Checks if one side is wildcard and the other side is a container of the same type
bool lhsWildcard = lhsArg.alias_info() && lhsArg.alias_info()->isWildcardAfter() && canAliasTypeSetsAlias(lhsTypes, rhsContainedTypes);
bool rhsWildcard = rhsArg.alias_info() && rhsArg.alias_info()->isWildcardAfter() && canAliasTypeSetsAlias(rhsTypes, lhsContainedTypes);
if (bidirectional) {
return lhsWildcard || rhsWildcard || canAliasTypeSetsAlias(lhsContainedTypes, rhsContainedTypes);
} else {
return rhsWildcard || canAliasTypeSetsAlias(lhsContainedTypes, rhsContainedTypes);
}
}
std::ostream& operator<<(std::ostream& out, const FunctionSchema& schema) {
// eventually this should look almost identical to python arg parser, but
// it is simpler for now to work directly on this schema
out << schema.name();
if (!schema.overload_name().empty()) {
out << "." << schema.overload_name();
}
out << "(";
bool seen_kwarg_only = false;
for (const auto i : c10::irange(schema.arguments().size())) {
if (i > 0) out << ", ";
if (schema.arguments()[i].kwarg_only() && !seen_kwarg_only) {
out << "*, ";
seen_kwarg_only = true;
}
out << schema.arguments()[i];
}
if(schema.is_vararg()) {
if(!schema.arguments().empty())
out << ", ";
out << "...";
}
out << ") -> ";
const auto& returns = schema.returns();
/*
* We should skip parenthesis if we return a single item and it's not varret,
* or we return nothing but varret.
*
* Need special handling for schema
* aten::items.str(Dict(str, t) self) -> (str,t)[]
* Even though this schema returns a single item, we need add parenthesis.
* The is necessary so the printed schema can be parsed by the C++ SchemaParser
* Without the extra parenthesis, the parser sees the first parenthesis in '(str,t)' and mistakenly
* treat the return type as a tuple. An alternative is to enhance the Lexer
* to lookahead multiple tokens to accurately decide if the return type is
* a tuple.
*/
bool need_paren = !(
(returns.size() == 1 && !schema.is_varret()) ||
(returns.empty() && schema.is_varret()));
if (returns.size() == 1 && !schema.is_varret()) {
std::stringstream return_ss;
return_ss << returns.at(0);
auto return_str = return_ss.str();
// enclosing the single return item with parenthesis if the return type
// starts with a left parenthesis.
//
// There are 2 cases
// 1. something like 'aten::items.str(Dict(str, t) self) -> ((str, t)[])'.
// without the extra parenthesis, the c++ schem parser can not parse it.
// 2. something like '-> ((str, str))'. Need extra parenthesis so the return
// type is a single tuple rather than two strings.
// PR (https://github.com/pytorch/pytorch/pull/23204) has more context about
// this. test_serialize_and_deserialize (https://github.com/pytorch/pytorch/blob/master/test/test_function_schema.py#L15)
// also covers this case.
if (!return_str.empty() && return_str.front() == '(') {
need_paren = true;
}
}
if (need_paren) {
out << "(";
}
for (const auto i : c10::irange(returns.size())) {
if (i > 0) {
out << ", ";
}
out << returns.at(i);
}
if (schema.is_varret()) {
if (!returns.empty()) {
out << ", ";
}
out << "...";
}
if (need_paren) {
out << ")";
}
return out;
}
static size_t findFirstOutArg(const std::vector<Argument>& args) {
// find the start of out args in the schema
for (const auto out_start_idx : c10::irange(args.size())) {
if (args.at(out_start_idx).is_out()) {
return out_start_idx;
}
}
return args.size();
}
bool Argument::isBackwardCompatibleWith(
const Argument& old,
std::ostream* why_not) const {
const Argument* lhs = this;
const Argument* rhs = &old;
if (!(lhs->name() == rhs->name()
&& lhs->N() == rhs->N()
&& (lhs->alias_info() == rhs->alias_info()
|| (lhs->alias_info() != nullptr && rhs->alias_info() != nullptr
&& *lhs->alias_info() == *rhs->alias_info())))) {
return false;
}
if (lhs->kwarg_only() && !rhs->kwarg_only()) {
return false;
}
if (!rhs->type()->isSubtypeOfExt(*lhs->type(), why_not)) {
return false;
}
if (rhs->default_value().has_value() &&
lhs->default_value() != rhs->default_value()) {
return false;
}
return true;
}
bool Argument::isForwardCompatibleWith(
const Argument& old,
std::ostream* why_not) const {
const Argument* lhs = this;
const Argument* rhs = &old;
if (!(lhs->name() == rhs->name()
&& lhs->N() == rhs->N()
&& (lhs->alias_info() == rhs->alias_info()
|| (lhs->alias_info() != nullptr && rhs->alias_info() != nullptr
&& *lhs->alias_info() == *rhs->alias_info())))) {
return false;
}
if (lhs->kwarg_only() && !rhs->kwarg_only()) {
return false;
}
if (!lhs->type()->isSubtypeOfExt(rhs->type(), why_not)) {
return false;
}
if (rhs->default_value().has_value() &&
lhs->default_value() != rhs->default_value()) {
return false;
}
if (lhs->default_value().has_value() && !rhs->default_value().has_value()) {
return false;
}
return true;
}
std::string FunctionSchema::formatTypeMismatchMsg(
const Argument& expected,
const std::string& actual_type,
std::optional<size_t> position,
std::optional<std::string> value) const {
std::string position_str;
if (position) {
position_str = c10::str("Position: ", *position, "\n");
}
std::string value_str;
if (value) {
value_str = c10::str("Value: ", *value, "\n");
}
return c10::str(
name(),
"() ",
expected.formatTypeMismatchMsg(actual_type),
position_str,
value_str,
"Declaration: ",
*this);
}
bool FunctionSchema::isBackwardCompatibleWith(
const FunctionSchema& old,
std::ostream* why_not) const {
if (!(name() == old.name()
&& overload_name() == old.overload_name()
// we are conservative on is_vararg and is_varret,
// since they are only used by internal operators
&& is_vararg() == old.is_vararg()
&& is_varret() == old.is_varret()
&& returns().size() == old.returns().size()
&& arguments().size() >= old.arguments().size())) {
return false;
}
for (const auto i : c10::irange(returns().size())) {
// Backwards compatibility requires covariance on argument types
// (i.e. more generic), and contravariance on return types (i.e.
// more specific).
if (!old.returns().at(i).isBackwardCompatibleWith(
returns().at(i),
why_not)) {
return false;
}
}
// we want to test both out and default args separately
size_t old_out_start_idx = findFirstOutArg(old.arguments());
size_t new_out_start_idx = findFirstOutArg(arguments());
// make sure among the default args, they are backward compatible
for (const auto i : c10::irange(old_out_start_idx)) {
if (!arguments().at(i).isBackwardCompatibleWith(
old.arguments().at(i), why_not)) {
return false;
}
}
// Validate that all new arguments provided has a default value
for (const auto i : c10::irange(old_out_start_idx, new_out_start_idx)) {
if (!arguments().at(i).default_value()) {
if (why_not) {
*why_not
<< "Function schema not backward compatible since the new argument '"
<< arguments().at(i).name() << "' of type "
<< arguments().at(i).type()->str()
<< " did not provide a default value.";
}
return false;
}
}
// now compare the out args
for (const auto i : c10::irange(old_out_start_idx, old.arguments().size())) {
if (!arguments()
.at(i - old_out_start_idx + new_out_start_idx)
.isBackwardCompatibleWith(old.arguments().at(i), why_not)) {
return false;
}
}
return true;
}
bool FunctionSchema::isForwardCompatibleWith(
const FunctionSchema& old,
std::ostringstream& why_not) const {
if (!(name() == old.name() &&
overload_name() == old.overload_name()
// we are conservative on is_vararg and is_varret,
// since they are only used by internal operators
&& is_vararg() == old.is_vararg() && is_varret() == old.is_varret() &&
returns().size() == old.returns().size())) {
return false;
}
// we want to test both out and default args separately
size_t old_out_start_idx = findFirstOutArg(old.arguments());
size_t new_out_start_idx = findFirstOutArg(arguments());
if (old.arguments().size() - old_out_start_idx !=
arguments().size() - new_out_start_idx) {
if (why_not) {
why_not << "Function schema should have the "
<< "same number of out arguments";
}
return false;
}
// make sure among the default args, they are forward compatible
for (size_t i = 0; i < std::min(old_out_start_idx, new_out_start_idx); i++) {
if (!arguments().at(i).isForwardCompatibleWith(old.arguments().at(i))) {
if (why_not) {
why_not
<< "'" << arguments().at(i).name() << "'"
<< " is not forward compatible with the older version of the schema";
}
return false;
}
}
// Validate that all new arguments provided has a default value
for (size_t i = old_out_start_idx; i < new_out_start_idx; ++i) {
if (!arguments().at(i).default_value()) {
if (why_not) {
why_not
<< "Function schema is not forward compatible since the new argument '"
<< arguments().at(i).name() << "' of type "
<< arguments().at(i).type()->str()
<< " did not provide a default value.";
}
return false;
}
auto default_val = arguments().at(i).default_value().value();
if (default_val.isList() || default_val.isGenericDict()) {
if (why_not) {
why_not
<< "Function schema is not forward compatible since the new argument '"
<< arguments().at(i).name() << "' of type "
<< arguments().at(i).type()->str() << " has a container type "
<< "as its default value.";
}
return false;
}
}
// now compare the out args
for (size_t i = old_out_start_idx; i < old.arguments().size(); i++) {
if (!arguments()
.at(i - old_out_start_idx + new_out_start_idx)
.isForwardCompatibleWith(old.arguments().at(i))) {
if (why_not) {
why_not << "Out argument '"
<< "'" << arguments().at(i).name()
<< " is not FC with the older version of the schema";
}
return false;
}
}
return true;
}
std::string FunctionSchema::findErrorInKwargs(const std::vector<std::string>& kwargs) const {
// First check if any of the kwargs are unknown, i.e. don't match the name of
// any argument in the schema.
for (const auto& kwarg : kwargs) {
if (!std::count_if(
arguments().begin(),
arguments().end(),
[&kwarg](const Argument& argument) {
return argument.name() == kwarg;
})) {
return c10::str(
"Unknown keyword argument '",
kwarg,
"' for operator '",
name(),
"'. Schema: ",
*this);
}
}
// If there are unconsumed kwargs but none of them were unknown, the first
// positional argument present in the kwargs is duplicated.
for (const auto& argument : arguments()) {
if (std::find(kwargs.begin(), kwargs.end(), argument.name()) != kwargs.end()) {
AT_ASSERT(!argument.default_value());
return c10::str(
"Argument '",
argument.name(),
"' specified both as positional and ",
"keyword argument. Schema: ",
*this);
}
}
return "";
}
FunctionSchema FunctionSchema::cloneWithRemappedTypes(
const std::function<TypePtr(TypePtr)> type_map) const {
auto update_args = [&](const std::vector<Argument>& args) {
std::vector<Argument> new_args;
new_args.reserve(args.size());
for(const Argument& arg : args) {
new_args.emplace_back(arg.cloneWithType(type_map(arg.type())));
}
return new_args;
};
return FunctionSchema(
name(),
overload_name(),
update_args(arguments()),
update_args(returns()),
is_vararg(),
is_varret());
}
// covariant subtyping of list of Arguments
static bool isSubtypeOfList(
ArrayRef<Argument> child,
ArrayRef<Argument> parent,
std::ostream* why_not) {
if (child.size() != parent.size()) {
return false;
}
for (const auto i : c10::irange(child.size())) {
const Argument& c = child[i];
const Argument& p = parent[i];
if (c.name() != p.name()) {
return false;
}
if (!c.type()->isSubtypeOfExt(*p.type(), why_not)) {
return false;
}
}
return true;
}
bool FunctionSchema::isSubtypeOf(
const FunctionSchema& rhs,
bool as_method,
std::ostream* why_not) const {
size_t start = as_method ? 1 : 0;
// functions are contravariant in arguments but covariant in returns
return isSubtypeOfList(
ArrayRef<Argument>(rhs.arguments()).slice(start),
ArrayRef<Argument>(arguments()).slice(start),
why_not) &&
isSubtypeOfList(returns(), rhs.returns(), why_not);
}
} // namespace c10