-
Notifications
You must be signed in to change notification settings - Fork 3
/
loss.py
189 lines (165 loc) · 7.25 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import torch.nn as nn
import torch
class CrossEntropyLabelSmooth(nn.Module):
"""Cross entropy loss with label smoothing regularizer.
Reference:
Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
Equation: y = (1 - epsilon) * y + epsilon / K.
Args:
num_classes (int): number of classes.
epsilon (float): weight.
"""
def __init__(self, num_classes, epsilon=0.1, use_gpu=True):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.use_gpu = use_gpu
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
"""
Args:
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
targets: ground truth labels with shape (num_classes)
"""
log_probs = self.logsoftmax(inputs)
targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).cpu(), 1)
if self.use_gpu: targets = targets.cuda()
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (- targets * log_probs).mean(0).sum()
return loss
class CenterLoss(nn.Module):
"""Center loss.
Reference:
Wen et al. A Discriminative Feature Learning Approach for Deep Face Recognition. ECCV 2016.
Args:
num_classes (int): number of classes.
feat_dim (int): feature dimension.
"""
def __init__(self, num_classes=751, feat_dim=2048, use_gpu=True):
super(CenterLoss, self).__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.use_gpu = use_gpu
if self.use_gpu:
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda())
else:
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim))
def forward(self, x, labels):
"""
Args:
x: feature matrix with shape (batch_size, feat_dim).
labels: ground truth labels with shape (num_classes).
"""
assert x.size(0) == labels.size(0), "features.size(0) is not equal to labels.size(0)"
batch_size = x.size(0)
distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \
torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()
distmat.addmm_(1, -2, x, self.centers.t())
classes = torch.arange(self.num_classes).long()
if self.use_gpu: classes = classes.cuda()
labels = labels.unsqueeze(1).expand(batch_size, self.num_classes)
mask = labels.eq(classes.expand(batch_size, self.num_classes))
dist = distmat * mask.float()
loss = dist.clamp(min=1e-12, max=1e+12).sum() / batch_size
#dist = []
#for i in range(batch_size):
# value = distmat[i][mask[i]]
# value = value.clamp(min=1e-12, max=1e+12) # for numerical stability
# dist.append(value)
#dist = torch.cat(dist)
#loss = dist.mean()
return loss
def normalize(x, axis=-1):
"""Normalizing to unit length along the specified dimension.
Args:
x: pytorch Variable
Returns:
x: pytorch Variable, same shape as input
"""
x = 1. * x / (torch.norm(x, 2, axis, keepdim=True).expand_as(x) + 1e-12)
return x
def euclidean_dist(x, y):
"""
Args:
x: pytorch Variable, with shape [m, d]
y: pytorch Variable, with shape [n, d]
Returns:
dist: pytorch Variable, with shape [m, n]
"""
m, n = x.size(0), y.size(0)
xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n)
yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t()
dist = xx + yy
dist.addmm_(1, -2, x, y.t())
dist = dist.clamp(min=1e-12).sqrt() # for numerical stability
return dist
def hard_example_mining(dist_mat, labels, return_inds=False):
"""For each anchor, find the hardest positive and negative sample.
Args:
dist_mat: pytorch Variable, pair wise distance between samples, shape [N, N]
labels: pytorch LongTensor, with shape [N]
return_inds: whether to return the indices. Save time if `False`(?)
Returns:
dist_ap: pytorch Variable, distance(anchor, positive); shape [N]
dist_an: pytorch Variable, distance(anchor, negative); shape [N]
p_inds: pytorch LongTensor, with shape [N];
indices of selected hard positive samples; 0 <= p_inds[i] <= N - 1
n_inds: pytorch LongTensor, with shape [N];
indices of selected hard negative samples; 0 <= n_inds[i] <= N - 1
NOTE: Only consider the case in which all labels have same num of samples,
thus we can cope with all anchors in parallel.
"""
assert len(dist_mat.size()) == 2
assert dist_mat.size(0) == dist_mat.size(1)
N = dist_mat.size(0)
# shape [N, N]
is_pos = labels.expand(N, N).eq(labels.expand(N, N).t())
is_neg = labels.expand(N, N).ne(labels.expand(N, N).t())
# `dist_ap` means distance(anchor, positive)
# both `dist_ap` and `relative_p_inds` with shape [N, 1]
dist_ap, relative_p_inds = torch.max(
dist_mat[is_pos].contiguous().view(N, -1), 1, keepdim=True)
# `dist_an` means distance(anchor, negative)
# both `dist_an` and `relative_n_inds` with shape [N, 1]
dist_an, relative_n_inds = torch.min(
dist_mat[is_neg].contiguous().view(N, -1), 1, keepdim=True)
# shape [N]
dist_ap = dist_ap.squeeze(1)
dist_an = dist_an.squeeze(1)
if return_inds:
# shape [N, N]
ind = (labels.new().resize_as_(labels)
.copy_(torch.arange(0, N).long())
.unsqueeze(0).expand(N, N))
# shape [N, 1]
p_inds = torch.gather(
ind[is_pos].contiguous().view(N, -1), 1, relative_p_inds.data)
n_inds = torch.gather(
ind[is_neg].contiguous().view(N, -1), 1, relative_n_inds.data)
# shape [N]
p_inds = p_inds.squeeze(1)
n_inds = n_inds.squeeze(1)
return dist_ap, dist_an, p_inds, n_inds
return dist_ap, dist_an
class TripletLoss(object):
"""Modified from Tong Xiao's open-reid (https://github.com/Cysu/open-reid).
Related Triplet Loss theory can be found in paper 'In Defense of the Triplet
Loss for Person Re-Identification'."""
def __init__(self, margin=None):
self.margin = margin
if margin is not None:
self.ranking_loss = nn.MarginRankingLoss(margin=margin)
else:
self.ranking_loss = nn.SoftMarginLoss()
def __call__(self, global_feat, labels, normalize_feature=False):
if normalize_feature:
global_feat = normalize(global_feat, axis=-1)
dist_mat = euclidean_dist(global_feat, global_feat)
dist_ap, dist_an = hard_example_mining(
dist_mat, labels)
y = dist_an.new().resize_as_(dist_an).fill_(1)
if self.margin is not None:
loss = self.ranking_loss(dist_an, dist_ap, y)
else:
loss = self.ranking_loss(dist_an - dist_ap, y)
return loss, dist_ap, dist_an