-
Notifications
You must be signed in to change notification settings - Fork 0
/
collect-data.py
103 lines (91 loc) · 3.79 KB
/
collect-data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import cv2
import numpy as np
import os
# Create the directory structure
if not os.path.exists("data"):
os.makedirs("data")
os.makedirs("data/train")
os.makedirs("data/test")
os.makedirs("data/train/0")
os.makedirs("data/train/1")
os.makedirs("data/train/2")
os.makedirs("data/train/3")
os.makedirs("data/train/4")
os.makedirs("data/train/5")
os.makedirs("data/test/0")
os.makedirs("data/test/1")
os.makedirs("data/test/2")
os.makedirs("data/test/3")
os.makedirs("data/test/4")
os.makedirs("data/test/5")
# Train or test
mode = 'test'
directory = 'data/'+mode+'/'
cap = cv2.VideoCapture(2)
while True:
_, frame = cap.read()
# Simulating mirror image
frame = cv2.flip(frame, 1)
# Getting count of existing images
count = {'zero': len(os.listdir(directory+"/0")),
'one': len(os.listdir(directory+"/1")),
'two': len(os.listdir(directory+"/2")),
'three': len(os.listdir(directory+"/3")),
'four': len(os.listdir(directory+"/4")),
'five': len(os.listdir(directory+"/5"))}
# Printing the count in each set to the screen
cv2.putText(frame, "MODE : "+mode, (10, 50), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "IMAGE COUNT", (10, 100), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "ZERO : "+str(count['zero']), (10, 120), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "ONE : "+str(count['one']), (10, 140), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "TWO : "+str(count['two']), (10, 160), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "THREE : "+str(count['three']), (10, 180), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "FOUR : "+str(count['four']), (10, 200), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
cv2.putText(frame, "FIVE : "+str(count['five']), (10, 220), cv2.FONT_HERSHEY_PLAIN, 1, (0,255,255), 1)
# Coordinates of the ROI
x1 = int(0.5*frame.shape[1])
y1 = 10
x2 = frame.shape[1]-10
y2 = int(0.5*frame.shape[1])
# Drawing the ROI
# The increment/decrement by 1 is to compensate for the bounding box
cv2.rectangle(frame, (x1-1, y1-1), (x2+1, y2+1), (255,0,0) ,1)
# Extracting the ROI
roi = frame[y1:y2, x1:x2]
roi = cv2.resize(roi, (64, 64))
cv2.imshow("Frame", frame)
#_, mask = cv2.threshold(mask, 200, 255, cv2.THRESH_BINARY)
#kernel = np.ones((1, 1), np.uint8)
#img = cv2.dilate(mask, kernel, iterations=1)
#img = cv2.erode(mask, kernel, iterations=1)
# do the processing after capturing the image!
roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
_, roi = cv2.threshold(roi, 155, 255, cv2.THRESH_BINARY)
cv2.imshow("ROI", roi)
interrupt = cv2.waitKey(10)
if interrupt & 0xFF == 27: # esc key
break
if interrupt & 0xFF == ord('0'):
cv2.imwrite(directory+'0/'+str(count['zero'])+'.jpg', roi)
if interrupt & 0xFF == ord('1'):
cv2.imwrite(directory+'1/'+str(count['one'])+'.jpg', roi)
if interrupt & 0xFF == ord('2'):
cv2.imwrite(directory+'2/'+str(count['two'])+'.jpg', roi)
if interrupt & 0xFF == ord('3'):
cv2.imwrite(directory+'3/'+str(count['three'])+'.jpg', roi)
if interrupt & 0xFF == ord('4'):
cv2.imwrite(directory+'4/'+str(count['four'])+'.jpg', roi)
if interrupt & 0xFF == ord('5'):
cv2.imwrite(directory+'5/'+str(count['five'])+'.jpg', roi)
cap.release()
cv2.destroyAllWindows()
"""
d = "old-data/test/0"
newd = "data/test/0"
for walk in os.walk(d):
for file in walk[2]:
roi = cv2.imread(d+"/"+file)
roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
_, mask = cv2.threshold(roi, 120, 255, cv2.THRESH_BINARY)
cv2.imwrite(newd+"/"+file, mask)
"""