-
Notifications
You must be signed in to change notification settings - Fork 45
/
pllava_recaption.py
294 lines (258 loc) · 10.5 KB
/
pllava_recaption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import functools
import itertools
import json
import logging
from tqdm import tqdm
from PIL import Image
from multiprocessing import Pool
from argparse import ArgumentParser
import multiprocessing as mp
import numpy as np
import torch
import torchvision
import transformers
from decord import VideoReader, cpu
from tasks.eval.model_utils import load_pllava, pllava_answer
from tasks.eval.eval_utils import conv_templates
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
IMAGE_TOKEN='<image>'
from tasks.eval.recaption import (
RecaptionDataset,
load_results,
save_results,
)
RESOLUTION = 672 #
def parse_args():
parser = ArgumentParser()
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
required=True,
default='llava-hf/llava-1.5-7b-hf'
)
parser.add_argument(
"--save_path",
type=str,
required=True,
default='"./test_results/test_llava_mvbench"'
)
parser.add_argument(
"--num_frames",
type=int,
required=True,
default=4,
)
parser.add_argument(
"--use_lora",
action='store_true'
)
parser.add_argument(
"--lora_alpha",
type=int,
required=False,
default=32,
)
parser.add_argument(
"--weight_dir",
type=str,
required=False,
default=None,
)
parser.add_argument(
"--eval_model",
type=str,
required=False,
default="gpt-3.5-turbo-0125",
)
parser.add_argument(
'--test_ratio',
type=float,
required=False,
default=None
)
parser.add_argument(
"--conv_mode",
type=str,
required=False,
default='eval_videoqabench',
)
args = parser.parse_args()
return args
def load_model_and_dataset(rank, world_size, pretrained_model_name_or_path, num_frames, use_lora, lora_alpha, weight_dir, test_ratio):
# remind that, once the model goes larger (30B+) may cause the memory to be heavily used up. Even Tearing Nodes.
model, processor = load_pllava(pretrained_model_name_or_path, num_frames=num_frames, use_lora=use_lora, lora_alpha=lora_alpha, weight_dir=weight_dir)
logger.info('done loading llava')
# position embedding
model = model.to(torch.device(rank))
model = model.eval()
dataset = RecaptionDataset(test_ratio=test_ratio, num_segments=num_frames)
dataset.set_rank_and_world_size(rank, world_size)
return model, processor, dataset
def infer_recaption(
model,
processor,
data_sample,
conv_mode,
pre_query_prompt=None, # add in the head of question
post_query_prompt=None, # add in the end of question
answer_prompt=None, # add in the begining of answer
return_prompt=None, # add in the begining of return message
print_res=False,
):
video_list = data_sample["video_pils"]
conv = conv_templates[conv_mode].copy()
# info = data_sample['info']
query = (
"You are to assist me in accomplishing a task about the input video. Reply to me with a precise yet detailed response. For how you would succeed in the recaptioning task, read the following Instructions section and Then, make your response with a elaborate paragraph.\n"
"# Instructions\n"
"1. Avoid providing over detailed information such as color, counts of any objects as you are terrible regarding observing these details\n"
"2. Instead, you should carefully go over the provided video and reason about key information about the overall video\n"
"3. If you are not sure about something, do not include it in you response.\n"
"# Task\n"
"Describe the background, characters and the actions in the provided video.\n"
)
conv.user_query(query, pre_query_prompt, post_query_prompt, is_mm=True)
if answer_prompt is not None:
conv.assistant_response(answer_prompt)
llm_message, conv = pllava_answer(
conv=conv,
model=model,
processor=processor,
img_list=video_list,
max_new_tokens=400,
num_beams=1,
do_sample=False,
print_res=print_res
)
if answer_prompt is not None:
llm_message = ''.join(llm_message.split(answer_prompt)[1:])
if return_prompt is not None:
llm_message = return_prompt + llm_message
return llm_message, query
def single_test(model, processor, vid_path, num_frames=4, conv_mode="plain"):
def get_index(num_frames, num_segments):
seg_size = float(num_frames - 1) / num_segments
start = int(seg_size / 2)
offsets = np.array([
start + int(np.round(seg_size * idx)) for idx in range(num_segments)
])
return offsets
def load_video(video_path, num_segments=8, return_msg=False, num_frames=4, resolution=336):
transforms = torchvision.transforms.Resize(size=resolution)
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
num_frames = len(vr)
frame_indices = get_index(num_frames, num_segments)
images_group = list()
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy())
images_group.append(transforms(img))
if return_msg:
fps = float(vr.get_avg_fps())
sec = ", ".join([str(round(f / fps, 1)) for f in frame_indices])
# " " should be added in the start and end
msg = f"The video contains {len(frame_indices)} frames sampled at {sec} seconds."
return images_group, msg
else:
return images_group
if num_frames != 0:
vid, msg = load_video(vid_path, num_segments=num_frames, return_msg=True, resolution=RESOLUTION)
else:
vid, msg = None, 'num_frames is 0, not inputing image'
img_list = vid
conv = conv_templates[conv_mode].copy()
conv.user_query("Describe the video in details.", is_mm=True)
llm_response, conv = pllava_answer(conv=conv, model=model, processor=processor, do_sample=False, img_list=img_list, max_new_tokens=256, print_res=True)
def run(rank, args, world_size):
if rank != 0:
transformers.utils.logging.set_verbosity_error()
logger.setLevel(transformers.logging.ERROR)
print_res = True
conv_mode= args.conv_mode
pre_query_prompt = None
post_query_prompt = None
# pre_query_prompt = ("""Assist me in detailing the background, characters, and actions depicted in the provided video.\n""")
# post_query_prompt = ("""My apologies for any lack of precision; there may be errors in the supplementary information provided.\n"""
# """You are encouraged to be discerning and perceptive, paying attention to the minutest details, """
# """and to furnish a detailed yet precise description using eloquent language.""")
logger.info(f'loading model and constructing dataset to gpu {rank}...')
model, processor, dataset = load_model_and_dataset(rank,
world_size,
pretrained_model_name_or_path=args.pretrained_model_name_or_path,
num_frames=args.num_frames,
use_lora=args.use_lora,
lora_alpha=args.lora_alpha,
weight_dir=args.weight_dir,
test_ratio=args.test_ratio)
logger.info(f'done model and dataset...')
logger.info('constructing dataset...')
logger.info('single test...')
vid_path = "./example/yoga.mp4"
# vid_path = "./example/jesse_dance.mp4"
if rank == 0:
single_test(model, processor, vid_path, num_frames=args.num_frames)
logger.info('single test done...')
tbar = tqdm(total=len(dataset))
logger.info('single test...')
result_list = []
done_count = 0
for example in dataset:
task_type = example['task_type']
if task_type in dataset.data_list_info:
pred, query = infer_recaption(
model,
processor,
example,
conv_mode=conv_mode,
pre_query_prompt=pre_query_prompt,
post_query_prompt=post_query_prompt,
print_res=print_res,
)
infos = {k: v for k, v in example['sample'].items() if isinstance(v, (str, float, int))}
res = {
'pred': pred,
'task_type': task_type,
'video_path': example['video_path'],
'query': query,
**infos
}
else:
raise NotImplementedError(f'not implemented task type {task_type}')
# res = chatgpt_eval(res)
result_list.append(res)
if rank == 0:
tbar.update(len(result_list) - done_count, )
tbar.set_description_str(
f"One Chunk--Task Type: {task_type}-"
f"pred: {pred[:min(15, len(pred))]}......"
)
done_count = len(result_list)
return result_list
def main():
multiprocess=True
mp.set_start_method('spawn')
args = parse_args()
save_path = args.save_path
eval_model = args.eval_model
logger.info(f'trying loading results from {save_path}')
result_list = load_results(save_path, model=args.eval_model)
if result_list is None:
if multiprocess:
logger.info(f'started benchmarking, saving to: {save_path}')
n_gpus = torch.cuda.device_count()
# assert n_gpus >= 2, f"Requires at least 2 GPUs to run, but got {n_gpus}"
world_size = n_gpus
with Pool(world_size) as pool:
func = functools.partial(run, args=args, world_size=world_size)
# func = functools.partial(run, world_size=world_size, model=model, dataset=dataset, result_list=[], acc_dict={})
result_lists = pool.map(func, range(world_size))
logger.info('finished running')
result_list = [ res for res in itertools.chain(*result_lists)]
else:
result_list = run(0, world_size=1, args=args) # debug
else:
logger.info(f'loaded results from {save_path}')
save_results(result_list, save_path, model=eval_model)
if __name__ == "__main__":
main()