forked from imrenagi/cloud-run-hackathon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
arena.go
150 lines (128 loc) · 2.98 KB
/
arena.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
package main
import (
"context"
"math"
)
type Grid [][]Cell
// A Utility Function to check whether the given cell is
// blocked or not
func (g Grid) IsUnblock(ctx context.Context, p Point) bool {
ctx, span := tracer.Start(ctx, "Grid.IsUnblock")
defer span.End()
return g[p.Y][p.X].Player == nil
}
type Cell struct {
Player *PlayerState
}
func NewArena(w, h int) Arena {
grid := make([][]Cell, h)
for y := range grid {
grid[y] = make([]Cell, w)
for x := range grid[y] {
grid[y][x] = Cell{}
}
}
return Arena{
Width: w,
Height: h,
Grid: grid,
}
}
type Arena struct {
Width int // x start from top left to the right
Height int // y start from top left to the bottom
Grid Grid
}
func (a *Arena) PutPlayer(p PlayerState) {
a.Grid[p.Y][p.X].Player = &p
}
func (a *Arena) GetPlayer(pt Point) *PlayerState {
if !a.IsValid(pt) {
return nil
}
return a.Grid[pt.Y][pt.X].Player
}
func (a Arena) Diagonal() float64 {
w := float64(a.Width)
h := float64(a.Height)
return math.Sqrt(w*w + h*h)
}
// Traverse with BFS
func (a Arena) Traverse(ctx context.Context, start Point) []Point {
var traversedNode []Point
visited := make([]bool, a.Width*a.Height)
queue := make([]Point, 0)
visited[start.Y*a.Width+start.X] = true
queue = append(queue, start)
for {
if len(queue) == 0 {
break
}
pt := queue[0]
traversedNode = append(traversedNode, pt)
queue = queue[1:]
adjancentNodes := a.GetAdjacent(ctx, pt, WithDiagonalAdjacents())
for _, n := range adjancentNodes {
if !visited[n.Y*a.Width+n.X] {
visited[n.Y*a.Width+n.X] = true
queue = append(queue, n)
}
}
}
return traversedNode
}
type AdjacentOption func(*AdjacentOptions)
type AdjacentOptions struct {
IncludeDiagonal bool
OnlyEmptyCell bool
}
func WithDiagonalAdjacents() AdjacentOption {
return func(options *AdjacentOptions) {
options.IncludeDiagonal = true
}
}
func WithEmptyAdjacent() AdjacentOption {
return func(options *AdjacentOptions) {
options.OnlyEmptyCell = true
}
}
func (a Arena) GetAdjacent(ctx context.Context, p Point, opts ...AdjacentOption) []Point {
ctx, span := tracer.Start(ctx, "Arena.GetAdjacent")
defer span.End()
options := &AdjacentOptions{}
for _, o := range opts {
o(options)
}
var adj []Point
iterator := [3]int{-1, 0, 1}
for _, i := range iterator {
for _, j := range iterator {
if !options.IncludeDiagonal {
if i*j == -1 || i*j == 1 {
continue
}
}
if i != 0 || j != 0 {
p := Point{X: p.X + i, Y: p.Y + j}
if !p.IsInArena(a) {
continue
}
if options.OnlyEmptyCell && !a.Grid.IsUnblock(ctx, p) {
continue
}
adj = append(adj, p)
}
}
}
return adj
}
// A Utility Function to check whether given cell (row, col)
// is a valid cell or not.
func (a Arena) IsValid(p Point) bool {
return p.Y >= 0 && p.Y < a.Height && p.X >= 0 && p.X < a.Width
}
// A Utility Function to check whether destination cell has
// been reached or not
func (a Arena) IsDestination(p, dest Point) bool {
return p.Equal(dest)
}