-
Notifications
You must be signed in to change notification settings - Fork 1
/
kfac.py
239 lines (185 loc) · 7.44 KB
/
kfac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import math
import torch
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from utils import AddBias
# TODO: In order to make this code faster:
# 1) Implement _extract_patches as a single cuda kernel
# 2) Compute QR decomposition in a separate process
# 3) Actually make a general KFAC optimizer so it fits PyTorch
def _extract_patches(x, kernel_size, stride, padding):
if padding[0] + padding[1] > 0:
x = F.pad(x, (padding[1], padding[1], padding[0],
padding[0])).data # Actually check dims
x = x.unfold(2, kernel_size[0], stride[0])
x = x.unfold(3, kernel_size[1], stride[1])
x = x.transpose_(1, 2).transpose_(2, 3).contiguous()
x = x.view(
x.size(0), x.size(1), x.size(2), x.size(3) * x.size(4) * x.size(5))
return x
def compute_cov_a(a, classname, layer_info, fast_cnn):
batch_size = a.size(0)
if classname == 'Conv2d':
if fast_cnn:
a = _extract_patches(a, *layer_info)
a = a.view(a.size(0), -1, a.size(-1))
a = a.mean(1)
else:
a = _extract_patches(a, *layer_info)
a = a.view(-1, a.size(-1)).div_(a.size(1)).div_(a.size(2))
elif classname == 'AddBias':
is_cuda = a.is_cuda
a = torch.ones(a.size(0), 1)
if is_cuda:
a = a.cuda()
return a.t() @ (a / batch_size)
def compute_cov_g(g, classname, layer_info, fast_cnn):
batch_size = g.size(0)
if classname == 'Conv2d':
if fast_cnn:
g = g.view(g.size(0), g.size(1), -1)
g = g.sum(-1)
else:
g = g.transpose(1, 2).transpose(2, 3).contiguous()
g = g.view(-1, g.size(-1)).mul_(g.size(1)).mul_(g.size(2))
elif classname == 'AddBias':
g = g.view(g.size(0), g.size(1), -1)
g = g.sum(-1)
g_ = g * batch_size
return g_.t() @ (g_ / g.size(0))
def update_running_stat(aa, m_aa, momentum):
# Do the trick to keep aa unchanged and not create any additional tensors
m_aa *= momentum / (1 - momentum)
m_aa += aa
m_aa *= (1 - momentum)
class SplitBias(nn.Module):
def __init__(self, module):
super(SplitBias, self).__init__()
self.module = module
self.add_bias = AddBias(module.bias.data)
self.module.bias = None
def forward(self, input):
x = self.module(input)
x = self.add_bias(x)
return x
class KFACOptimizer(optim.Optimizer):
def __init__(self,
model,
lr=0.25,
momentum=0.9,
stat_decay=0.99,
kl_clip=0.001,
damping=1e-2,
weight_decay=0,
fast_cnn=False,
Ts=1,
Tf=10):
defaults = dict()
def split_bias(module):
for mname, child in module.named_children():
if hasattr(child, 'bias'):
module._modules[mname] = SplitBias(child)
else:
split_bias(child)
split_bias(model)
super(KFACOptimizer, self).__init__(model.parameters(), defaults)
self.known_modules = {'Linear', 'Conv2d', 'AddBias'}
self.modules = []
self.grad_outputs = {}
self.model = model
self._prepare_model()
self.steps = 0
self.m_aa, self.m_gg = {}, {}
self.Q_a, self.Q_g = {}, {}
self.d_a, self.d_g = {}, {}
self.momentum = momentum
self.stat_decay = stat_decay
self.lr = lr
self.kl_clip = kl_clip
self.damping = damping
self.weight_decay = weight_decay
self.fast_cnn = fast_cnn
self.Ts = Ts
self.Tf = Tf
self.optim = optim.SGD(
model.parameters(),
lr=self.lr * (1 - self.momentum),
momentum=self.momentum)
def _save_input(self, module, input):
if input[0].volatile == False and self.steps % self.Ts == 0:
classname = module.__class__.__name__
layer_info = None
if classname == 'Conv2d':
layer_info = (module.kernel_size, module.stride,
module.padding)
aa = compute_cov_a(input[0].data, classname, layer_info,
self.fast_cnn)
# Initialize buffers
if self.steps == 0:
self.m_aa[module] = aa.clone()
update_running_stat(aa, self.m_aa[module], self.stat_decay)
def _save_grad_output(self, module, grad_input, grad_output):
if self.acc_stats:
classname = module.__class__.__name__
layer_info = None
if classname == 'Conv2d':
layer_info = (module.kernel_size, module.stride,
module.padding)
gg = compute_cov_g(grad_output[0].data, classname,
layer_info, self.fast_cnn)
# Initialize buffers
if self.steps == 0:
self.m_gg[module] = gg.clone()
update_running_stat(gg, self.m_gg[module], self.stat_decay)
def _prepare_model(self):
for module in self.model.modules():
classname = module.__class__.__name__
if classname in self.known_modules:
assert not ((classname in ['Linear', 'Conv2d']) and module.bias is not None), \
"You must have a bias as a separate layer"
self.modules.append(module)
module.register_forward_pre_hook(self._save_input)
module.register_backward_hook(self._save_grad_output)
def step(self):
# Add weight decay
if self.weight_decay > 0:
for p in self.model.parameters():
p.grad.data.add_(self.weight_decay, p.data)
updates = {}
for i, m in enumerate(self.modules):
assert len(list(m.parameters())
) == 1, "Can handle only one parameter at the moment"
classname = m.__class__.__name__
p = next(m.parameters())
la = self.damping + self.weight_decay
if self.steps % self.Tf == 0:
# My asynchronous implementation exists, I will add it later.
# Experimenting with different ways to this in PyTorch.
self.d_a[m], self.Q_a[m] = torch.symeig(
self.m_aa[m], eigenvectors=True)
self.d_g[m], self.Q_g[m] = torch.symeig(
self.m_gg[m], eigenvectors=True)
self.d_a[m].mul_((self.d_a[m] > 1e-6).float())
self.d_g[m].mul_((self.d_g[m] > 1e-6).float())
if classname == 'Conv2d':
p_grad_mat = p.grad.data.view(p.grad.data.size(0), -1)
else:
p_grad_mat = p.grad.data
v1 = self.Q_g[m].t() @ p_grad_mat @ self.Q_a[m]
v2 = v1 / (
self.d_g[m].unsqueeze(1) * self.d_a[m].unsqueeze(0) + la)
v = self.Q_g[m] @ v2 @ self.Q_a[m].t()
v = v.view(p.grad.data.size())
updates[p] = v
vg_sum = 0
for p in self.model.parameters():
v = updates[p]
vg_sum += (v * p.grad.data * self.lr * self.lr).sum()
nu = min(1, math.sqrt(self.kl_clip / vg_sum))
for p in self.model.parameters():
v = updates[p]
p.grad.data.copy_(v)
p.grad.data.mul_(nu)
self.optim.step()
self.steps += 1