forked from rasbt/python-machine-learning-book-3rd-edition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ch16_part2.py
308 lines (160 loc) · 5.76 KB
/
ch16_part2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# coding: utf-8
import numpy as np
import tensorflow as tf
# *Python Machine Learning 3rd Edition* by [Sebastian Raschka](https://sebastianraschka.com) & [Vahid Mirjalili](http://vahidmirjalili.com), Packt Publishing Ltd. 2019
#
# Code Repository: https://github.com/rasbt/python-machine-learning-book-3rd-edition
#
# Code License: [MIT License](https://github.com/rasbt/python-machine-learning-book-3rd-edition/blob/master/LICENSE.txt)
# Chapter 16: Modeling Sequential Data Using Recurrent Neural Networks (part 2/2)
# ========
#
#
# Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s).
# ## Project two: character-level language modeling in TensorFlow
#
# ### Preprocessing the dataset
## Reading and processing text
with open('1268-0.txt', 'r') as fp:
text=fp.read()
start_indx = text.find('THE MYSTERIOUS ISLAND')
end_indx = text.find('End of the Project Gutenberg')
print(start_indx, end_indx)
text = text[start_indx:end_indx]
char_set = set(text)
print('Total Length:', len(text))
print('Unique Characters:', len(char_set))
chars_sorted = sorted(char_set)
char2int = {ch:i for i,ch in enumerate(chars_sorted)}
char_array = np.array(chars_sorted)
text_encoded = np.array(
[char2int[ch] for ch in text],
dtype=np.int32)
print('Text encoded shape: ', text_encoded.shape)
print(text[:15], ' == Encoding ==> ', text_encoded[:15])
print(text_encoded[15:21], ' == Reverse ==> ', ''.join(char_array[text_encoded[15:21]]))
ds_text_encoded = tf.data.Dataset.from_tensor_slices(text_encoded)
for ex in ds_text_encoded.take(5):
print('{} -> {}'.format(ex.numpy(), char_array[ex.numpy()]))
seq_length = 40
chunk_size = seq_length + 1
ds_chunks = ds_text_encoded.batch(chunk_size, drop_remainder=True)
## inspection:
for seq in ds_chunks.take(1):
input_seq = seq[:seq_length].numpy()
target = seq[seq_length].numpy()
print(input_seq, ' -> ', target)
print(repr(''.join(char_array[input_seq])),
' -> ', repr(''.join(char_array[target])))
## define the function for splitting x & y
def split_input_target(chunk):
input_seq = chunk[:-1]
target_seq = chunk[1:]
return input_seq, target_seq
ds_sequences = ds_chunks.map(split_input_target)
## inspection:
for example in ds_sequences.take(2):
print(' Input (x):', repr(''.join(char_array[example[0].numpy()])))
print('Target (y):', repr(''.join(char_array[example[1].numpy()])))
print()
# Batch size
BATCH_SIZE = 64
BUFFER_SIZE = 10000
tf.random.set_seed(1)
ds = ds_sequences.shuffle(BUFFER_SIZE).batch(BATCH_SIZE)# drop_remainder=True)
ds
# ### Building a character-level RNN model
def build_model(vocab_size, embedding_dim, rnn_units):
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size, embedding_dim),
tf.keras.layers.LSTM(
rnn_units, return_sequences=True),
tf.keras.layers.Dense(vocab_size)
])
return model
charset_size = len(char_array)
embedding_dim = 256
rnn_units = 512
tf.random.set_seed(1)
model = build_model(
vocab_size = charset_size,
embedding_dim=embedding_dim,
rnn_units=rnn_units)
model.summary()
model.compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True
))
model.fit(ds, epochs=20)
# ### Evaluation phase: generating new text passages
tf.random.set_seed(1)
logits = [[1.0, 1.0, 1.0]]
print('Probabilities:', tf.math.softmax(logits).numpy()[0])
samples = tf.random.categorical(
logits=logits, num_samples=10)
tf.print(samples.numpy())
tf.random.set_seed(1)
logits = [[1.0, 1.0, 3.0]]
print('Probabilities:', tf.math.softmax(logits).numpy()[0])
samples = tf.random.categorical(
logits=logits, num_samples=10)
tf.print(samples.numpy())
def sample(model, starting_str,
len_generated_text=500,
max_input_length=40,
scale_factor=1.0):
encoded_input = [char2int[s] for s in starting_str]
encoded_input = tf.reshape(encoded_input, (1, -1))
generated_str = starting_str
model.reset_states()
for i in range(len_generated_text):
logits = model(encoded_input)
logits = tf.squeeze(logits, 0)
scaled_logits = logits * scale_factor
new_char_indx = tf.random.categorical(
scaled_logits, num_samples=1)
new_char_indx = tf.squeeze(new_char_indx)[-1].numpy()
generated_str += str(char_array[new_char_indx])
new_char_indx = tf.expand_dims([new_char_indx], 0)
encoded_input = tf.concat(
[encoded_input, new_char_indx],
axis=1)
encoded_input = encoded_input[:, -max_input_length:]
return generated_str
tf.random.set_seed(1)
print(sample(model, starting_str='The island'))
# * **Predictability vs. randomness**
logits = np.array([[1.0, 1.0, 3.0]])
print('Probabilities before scaling: ', tf.math.softmax(logits).numpy()[0])
print('Probabilities after scaling with 0.5:', tf.math.softmax(0.5*logits).numpy()[0])
print('Probabilities after scaling with 0.1:', tf.math.softmax(0.1*logits).numpy()[0])
tf.random.set_seed(1)
print(sample(model, starting_str='The island',
scale_factor=2.0))
tf.random.set_seed(1)
print(sample(model, starting_str='The island',
scale_factor=0.5))
# # Understanding language with the Transformer model
#
# ## Understanding the self-attention mechanism
#
# ## A basic version of self-attention
#
#
# ### Parameterizing the self-attention mechanism with query, key, and value weights
#
#
# ## Multi-head attention and the Transformer block
#
# ...
#
#
# # Summary
#
# ...
#
#
#
# Readers may ignore the next cell.
#