Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How can I do inference after finishing the learning? #80

Open
NogizakaDaisuki opened this issue Feb 4, 2019 · 1 comment
Open

How can I do inference after finishing the learning? #80

NogizakaDaisuki opened this issue Feb 4, 2019 · 1 comment

Comments

@NogizakaDaisuki
Copy link

As mentioned in the title, how can I do inference after finishing the learning?

@cxf2015
Copy link

cxf2015 commented Feb 28, 2019

self.weight_file = weight_file
self.gpu_id = [gpu_id]
self.img_dim = 640
self.num_classes = 6
self.net = build_net(self.img_dim, self.num_classes, use_refine=True)
self.rgb_std = (1, 1, 1)
self.rgb_means = (104, 117, 123)
self.thresh = 0.4

    # print('Loading resume network', weight_file)
    state_dict = torch.load(weight_file)
    # create new OrderedDict that does not contain `module.`
    from collections import OrderedDict
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        head = k[:7]
        if head == 'module.':
            name = k[7:]  # remove `module.`
        else:
            name = k
        new_state_dict[name] = v
    self.net.load_state_dict(new_state_dict)

    if self.gpu_id is not None:
        self.net = torch.nn.DataParallel(self.net, device_ids=self.gpu_id)
        self.net.cuda()
        cudnn.benchmark = True

    self.priorbox = PriorBox(VOC_512)
    self.detector = Detect(self.num_classes, 0, VOC_512, object_score=0.01)
    self.priors = Variable(self.priorbox.forward(), volatile=True)

    self.net.eval()
    self.transform = BaseTransform(self.net.module.size, self.rgb_means, self.rgb_std, (2, 0, 1))
def forward(self, image):

    x = Variable(self.transform(image).unsqueeze(0), volatile=True)
    if self.gpu_id is not None:
        x = x.cuda()

    out = self.net(x=x, test=True)  # forward pass
    print('out ok')
    arm_loc, arm_conf, odm_loc, odm_conf = out
    print(np.shape(arm_loc))
    print(np.shape(arm_conf))
    print(np.shape(odm_loc))
    print(np.shape(odm_conf))
    boxes, scores = self.detector.forward((odm_loc, odm_conf), self.priors, (arm_loc, arm_conf))
    # detect_time = _t['im_detect'].toc()
    boxes = boxes[0]
    scores = scores[0]

    boxes = boxes.cpu().numpy()
    scores = scores.cpu().numpy()
    # scale each detection back up to the image
    scale = torch.Tensor([image.shape[1], image.shape[0],
                          image.shape[1], image.shape[0]]).cpu().numpy()
    boxes *= scale

    num_images = 1
    all_boxes = [[[] for _ in range(num_images)]
                 for _ in range(self.num_classes)]

    bboxes = []
    for j in range(1, self.num_classes):
        # print(list(scores[:, j]))
        inds = np.where(scores[:, j] > self.thresh)[0]
        if len(inds) == 0:
            all_boxes[j][0] = np.empty([0, 5], dtype=np.float32)
            continue
        c_bboxes = boxes[inds]
        c_scores = scores[inds, j]
        c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(np.float32, copy=False)

        keep = nms(c_dets, 0.45, force_cpu=True)
        keep = keep[:100]
        c_dets = c_dets[keep, :]
        all_boxes[j][0] = c_dets
        for x in range(len(c_dets)):
            # if not self.HaveRedMarker(image, [int(c_dets[x][0]), int(c_dets[x][1]), int(c_dets[x][2]), int(c_dets[x][3])]):
            #     continue
            bboxes.append([c_dets[x][0], c_dets[x][1], c_dets[x][2], c_dets[x][3], j])

    return bboxes

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants