简体中文 | English
- 新增用于X-Ray胸腔标注模型,该模型基于ResNet50_DeeplabV3+及ResNet18_DeeplabV3+,参考MoCo对比学习的思想,优化其数据增强策略,以匹配X-ray的图像特性,完成多数据源的对比学习预训练,提供可靠的预训练模型参数。
- 新增MRI椎骨标注模型,该模型与广州第一人民医院合作,基于MRSpineSeg训练,可实现一键识别磁共振(MRI)模态和CT模态的矢状位方向的腰椎椎体及其附件。
- 新增铝板瑕疵标注模型,该模型基于百度自建质检数据集训练,可实现常见的铝板瑕疵如黑点,小白线,异物等瑕疵的智能标注。
EISeg(Efficient Interactive Segmentation)是以RITM及EdgeFlow算法为基础,基于飞桨开发的一个高效智能的交互式分割标注软件。涵盖了通用、人像、遥感、医疗、工业质检等不同方向的高质量交互式分割模型,方便开发者快速实现语义及实例标签的标注,降低标注成本。 另外,将EISeg获取到的标注应用到PaddleSeg提供的其他分割模型进行训练,便可得到定制化场景的高精度模型,打通分割任务从数据标注到模型训练及预测的全流程。
在使用EIseg前,请先下载模型参数。EISeg 0.5.0版本开放了在COCO+LVIS、大规模人像数据、mapping_challenge,Chest X-Ray,MRSpineSeg,LiTS及百度自建质检数据集上训练的7个垂类方向模型,满足通用场景、人像场景、建筑物标注,医疗影像肝脏,胸腔,椎骨及铝板质检的标注需求。其中模型结构对应EISeg交互工具中的网络选择模块,用户需要根据自己的场景需求选择不同的网络结构和加载参数。
模型类型 | 适用场景 | 模型结构 | 模型下载地址 |
---|---|---|---|
高精度模型 | 通用场景的图像标注 | HRNet18_OCR64 | static_hrnet18_ocr64_cocolvis |
轻量化模型 | 通用场景的图像标注 | HRNet18s_OCR48 | static_hrnet18s_ocr48_cocolvis |
高精度模型 | 通用图像标注场景 | EdgeFlow | static_edgeflow_cocolvis |
高精度模型 | 人像标注场景 | HRNet18_OCR64 | static_hrnet18_ocr64_human |
轻量化模型 | 人像标注场景 | HRNet18s_OCR48 | static_hrnet18s_ocr48_human |
轻量化模型 | 遥感建筑物标注场景 | HRNet18s_OCR48 | static_hrnet18_ocr48_rsbuilding_instance |
轻量化模型 | 医疗肝脏标注场景 | HRNet18s_OCR48 | static_hrnet18s_ocr48_lits |
高精度模型* | x光胸腔标注场景 | Resnet50_Deeplabv3+ | static_resnet50_deeplab_chest_xray |
高精度模型* | x光胸腔标注场景 | Resnet18_Deeplabv3+ | static_resnet18_deeplab_chest_xray |
轻量化模型* | MRI椎骨图像标注场景 | HRNet18s_OCR48 | static_hrnet18s_ocr48_MRSpineSeg |
轻量化模型* | 质检铝板瑕疵标注场景 | HRNet18s_OCR48 | static_hrnet18s_ocr48_aluminium |
NOTE: 将下载的模型结构*.pdmodel
及相应的模型参数*.pdiparams
需要放到同一个目录下,加载模型时只需选择*.pdiparams
结尾的模型参数位置即可, *.pdmodel
会自动加载。在使用EdgeFlow
模型时,请将使用掩膜
关闭,其他模型使用时请勾选使用掩膜
。其中,高精度模型
推荐使用带有显卡的电脑,以便获得更流畅的标注体验。
EISeg提供多种安装方式,其中使用pip和运行代码方式可兼容Windows,Mac OS和Linux。为了避免环境冲突,推荐在conda创建的虚拟环境中安装。PaddlePaddle安装请参考官网。
PaddlePaddle及EISeg版本对应关系:
EISeg版本 | PaddlePaddle版本 | 备注 |
---|---|---|
release/0.5 | >= 2.2.0 | 使用静态图模式 |
release/0.4 | >= 2.2.0 | 使用静态图模式 |
release/0.3 | >= 2.1.0 | 使用动态图模式 |
release/0.2 | >= 2.1.0 | 使用动态图模式 |
通过git将PaddleSeg克隆到本地:
git clone https://github.com/PaddlePaddle/PaddleSeg.git
安装所需环境(若需要使用到GDAL和SimpleITK请参考垂类分割进行安装):
pip install -r requirements.txt
安装好所需环境后,进入EISeg,可通过直接运行eiseg打开EISeg:
cd PaddleSeg\EISeg
python -m eiseg
或进入eiseg,运行exe.py打开EISeg:
cd PaddleSeg\EISeg\eiseg
python exe.py
pip安装方式如下:
pip install eiseg
pip会自动安装依赖。安装完成后命令行输入:
eiseg
即可运行软件。
打开软件后,在对项目进行标注前,需要进行如下设置:
-
模型参数加载
根据标注场景,选择合适的网络模型及参数进行加载。目前在EISeg0.4.0中,已经将动态图预测转为静态图预测,全面提升单次点击的预测速度。选择合适的模型及参数下载解压后,模型结构
*.pdmodel
及相应的模型参数*.pdiparams
需要放到同一个目录下,加载模型时只需选择*.pdiparams
结尾的模型参数位置即可。静态图模型初始化时间稍长,请耐心等待模型加载完成后进行下一步操作。正确加载的模型参数会记录在近期模型参数
中,可以方便切换,并且下次打开软件时自动加载退出时的模型参数。 -
图像加载
打开图像/图像文件夹。当看到主界面图像正确加载,
数据列表
正确出现图像路径即可。 -
标签添加/加载
添加/加载标签。可以通过
添加标签
新建标签,标签分为4列,分别对应像素值、说明、颜色和删除。新建好的标签可以通过保存标签列表
保存为txt文件,其他合作者可以通过加载标签列表
将标签导入。通过加载方式导入的标签,重启软件后会自动加载。 -
自动保存设置
在使用中可以将
自动保存
设置上,设定好文件夹即可,这样在使用时切换图像会自动将完成标注的图像进行保存。
当设置完成后即可开始进行标注,默认情况下常用的按键/快捷键如下,如需修改可按E
弹出快捷键修改。
部分按键/快捷键 | 功能 |
---|---|
鼠标左键 | 增加正样本点 |
鼠标右键 | 增加负样本点 |
鼠标中键 | 平移图像 |
Ctrl+鼠标中键(滚轮) | 缩放图像 |
S | 切换上一张图 |
F | 切换下一张图 |
Space(空格) | 完成标注/切换状态 |
Ctrl+Z | 撤销 |
Ctrl+Shift+Z | 清除 |
Ctrl+Y | 重做 |
Ctrl+A | 打开图像 |
Shift+A | 打开文件夹 |
E | 打开快捷键表 |
Backspace(退格) | 删除多边形 |
鼠标双击(点) | 删除点 |
鼠标双击(边) | 添加点 |
-
多边形
- 交互完成后使用Space(空格)完成交互标注,此时出现多边形边界;
- 当需要在多边形内部继续进行交互,则使用空格切换为交互模式,此时多边形无法选中和更改。
- 多边形可以删除,使用鼠标左边可以对锚点进行拖动,鼠标左键双击锚点可以删除锚点,双击两点之间的边则可在此边添加一个锚点。
- 打开
保留最大连通块
后,所有的点击只会在图像中保留面积最大的区域,其余小区域将不会显示和保存。
-
保存格式
- 打开保存
JSON保存
或COCO保存
后,多边形会被记录,加载时会自动加载。 - 若不设置保存路径,默认保存至当前图像文件夹下的label文件夹中。
- 如果有图像之间名称相同但后缀名不同,可以打开
标签和图像使用相同扩展名
。 - 还可设置灰度保存、伪彩色保存和抠图保存,见工具栏中7-9号工具。
- 打开保存
-
生成mask
- 标签按住第二列可以进行拖动,最后生成mask时会根据标签列表从上往下进行覆盖。
-
界面模块
- 可在
显示
中选择需要显示的界面模块,正常退出时将会记录界面模块的状态和位置,下次打开自动加载。
- 可在
-
垂类分割
EISeg目前已添加对遥感图像和医学影像分割的支持,使用相关功能需要安装额外依赖。
-
脚本工具使用
EISeg目前提供包括标注转PaddleX数据集、划分COCO格式以及语义标签转实例标签等脚本工具,相关使用方式详见脚本工具使用。
- 2022.04.10 0.5.0:【1】新增chest_xray模型 【2】新增MRSpineSeg模型 【3】新增铝板质检标注模型
- 2021.12.14 0.4.1:【1】修复闪退问题; 【2】新增建筑物遥感标注后处理操作。
- 2021.11.16 0.4.0:【1】将动态图预测转换成静态图预测,单次点击速度提升十倍;【2】新增遥感图像标注功能,支持多光谱数据通道的选择;【3】支持大尺幅数据的切片(多宫格)处理;【4】新增医疗图像标注功能,支持读取dicom的数据格式,支持选择窗宽和窗位。
- 2021.09.16 0.3.0:【1】初步完成多边形编辑功能,支持对交互标注的结果进行编辑;【2】支持中/英界面;【3】支持保存为灰度/伪彩色标签和COCO格式;【4】界面拖动更加灵活;【5】标签栏可拖动,生成mask的覆盖顺序由上往下覆盖。
- 2021.07.07 0.2.0:新增contrib:EISeg,可实现人像和通用图像的快速交互式标注。
- 感谢Lin Han, Yizhou Chen, Yiakwy, GT, Youssef Harby, Nick Nie 等开发者及RITM 算法支持。
- 感谢Weibin Liao提供的ResNet50_DeeplabV3+及ResNet18_DeeplabV3+预训练模型。
- 感谢Junjie Guo及Jiajun Feng在椎骨模型上提供的技术支持。
如果我们的项目在学术上帮助到你,请考虑以下引用:
@article{hao2021edgeflow,
title={EdgeFlow: Achieving Practical Interactive Segmentation with Edge-Guided Flow},
author={Hao, Yuying and Liu, Yi and Wu, Zewu and Han, Lin and Chen, Yizhou and Chen, Guowei and Chu, Lutao and Tang, Shiyu and Yu, Zhiliang and Chen, Zeyu and others},
journal={arXiv preprint arXiv:2109.09406},
year={2021}
}