forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 1
/
model.py
executable file
·678 lines (652 loc) · 32.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Author: aneelakantan (Arvind Neelakantan)
"""
import numpy as np
import tensorflow as tf
import nn_utils
class Graph():
def __init__(self, utility, batch_size, max_passes, mode="train"):
self.utility = utility
self.data_type = self.utility.tf_data_type[self.utility.FLAGS.data_type]
self.max_elements = self.utility.FLAGS.max_elements
max_elements = self.utility.FLAGS.max_elements
self.num_cols = self.utility.FLAGS.max_number_cols
self.num_word_cols = self.utility.FLAGS.max_word_cols
self.question_length = self.utility.FLAGS.question_length
self.batch_size = batch_size
self.max_passes = max_passes
self.mode = mode
self.embedding_dims = self.utility.FLAGS.embedding_dims
#input question and a mask
self.batch_question = tf.placeholder(tf.int32,
[batch_size, self.question_length])
self.batch_question_attention_mask = tf.placeholder(
self.data_type, [batch_size, self.question_length])
#ground truth scalar answer and lookup answer
self.batch_answer = tf.placeholder(self.data_type, [batch_size])
self.batch_print_answer = tf.placeholder(
self.data_type,
[batch_size, self.num_cols + self.num_word_cols, max_elements])
#number columns and its processed version
self.batch_number_column = tf.placeholder(
self.data_type, [batch_size, self.num_cols, max_elements
]) #columns with numeric entries
self.batch_processed_number_column = tf.placeholder(
self.data_type, [batch_size, self.num_cols, max_elements])
self.batch_processed_sorted_index_number_column = tf.placeholder(
tf.int32, [batch_size, self.num_cols, max_elements])
#word columns and its processed version
self.batch_processed_word_column = tf.placeholder(
self.data_type, [batch_size, self.num_word_cols, max_elements])
self.batch_processed_sorted_index_word_column = tf.placeholder(
tf.int32, [batch_size, self.num_word_cols, max_elements])
self.batch_word_column_entry_mask = tf.placeholder(
tf.int32, [batch_size, self.num_word_cols, max_elements])
#names of word and number columns along with their mask
self.batch_word_column_names = tf.placeholder(
tf.int32,
[batch_size, self.num_word_cols, self.utility.FLAGS.max_entry_length])
self.batch_word_column_mask = tf.placeholder(
self.data_type, [batch_size, self.num_word_cols])
self.batch_number_column_names = tf.placeholder(
tf.int32,
[batch_size, self.num_cols, self.utility.FLAGS.max_entry_length])
self.batch_number_column_mask = tf.placeholder(self.data_type,
[batch_size, self.num_cols])
#exact match and group by max operation
self.batch_exact_match = tf.placeholder(
self.data_type,
[batch_size, self.num_cols + self.num_word_cols, max_elements])
self.batch_column_exact_match = tf.placeholder(
self.data_type, [batch_size, self.num_cols + self.num_word_cols])
self.batch_group_by_max = tf.placeholder(
self.data_type,
[batch_size, self.num_cols + self.num_word_cols, max_elements])
#numbers in the question along with their position. This is used to compute arguments to the comparison operations
self.batch_question_number = tf.placeholder(self.data_type, [batch_size, 1])
self.batch_question_number_one = tf.placeholder(self.data_type,
[batch_size, 1])
self.batch_question_number_mask = tf.placeholder(
self.data_type, [batch_size, max_elements])
self.batch_question_number_one_mask = tf.placeholder(self.data_type,
[batch_size, 1])
self.batch_ordinal_question = tf.placeholder(
self.data_type, [batch_size, self.question_length])
self.batch_ordinal_question_one = tf.placeholder(
self.data_type, [batch_size, self.question_length])
def LSTM_question_embedding(self, sentence, sentence_length):
#LSTM processes the input question
lstm_params = "question_lstm"
hidden_vectors = []
sentence = self.batch_question
question_hidden = tf.zeros(
[self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type)
question_c_hidden = tf.zeros(
[self.batch_size, self.utility.FLAGS.embedding_dims], self.data_type)
if (self.utility.FLAGS.rnn_dropout > 0.0):
if (self.mode == "train"):
rnn_dropout_mask = tf.cast(
tf.random_uniform(
tf.shape(question_hidden), minval=0.0, maxval=1.0) <
self.utility.FLAGS.rnn_dropout,
self.data_type) / self.utility.FLAGS.rnn_dropout
else:
rnn_dropout_mask = tf.ones_like(question_hidden)
for question_iterator in range(self.question_length):
curr_word = sentence[:, question_iterator]
question_vector = nn_utils.apply_dropout(
nn_utils.get_embedding(curr_word, self.utility, self.params),
self.utility.FLAGS.dropout, self.mode)
question_hidden, question_c_hidden = nn_utils.LSTMCell(
question_vector, question_hidden, question_c_hidden, lstm_params,
self.params)
if (self.utility.FLAGS.rnn_dropout > 0.0):
question_hidden = question_hidden * rnn_dropout_mask
hidden_vectors.append(tf.expand_dims(question_hidden, 0))
hidden_vectors = tf.concat(0, hidden_vectors)
return question_hidden, hidden_vectors
def history_recurrent_step(self, curr_hprev, hprev):
#A single RNN step for controller or history RNN
return tf.tanh(
tf.matmul(
tf.concat(1, [hprev, curr_hprev]), self.params[
"history_recurrent"])) + self.params["history_recurrent_bias"]
def question_number_softmax(self, hidden_vectors):
#Attention on quetsion to decide the question number to passed to comparison ops
def compute_ans(op_embedding, comparison):
op_embedding = tf.expand_dims(op_embedding, 0)
#dot product of operation embedding with hidden state to the left of the number occurence
first = tf.transpose(
tf.matmul(op_embedding,
tf.transpose(
tf.reduce_sum(hidden_vectors * tf.tile(
tf.expand_dims(
tf.transpose(self.batch_ordinal_question), 2),
[1, 1, self.utility.FLAGS.embedding_dims]), 0))))
second = self.batch_question_number_one_mask + tf.transpose(
tf.matmul(op_embedding,
tf.transpose(
tf.reduce_sum(hidden_vectors * tf.tile(
tf.expand_dims(
tf.transpose(self.batch_ordinal_question_one), 2
), [1, 1, self.utility.FLAGS.embedding_dims]), 0))))
question_number_softmax = tf.nn.softmax(tf.concat(1, [first, second]))
if (self.mode == "test"):
cond = tf.equal(question_number_softmax,
tf.reshape(
tf.reduce_max(question_number_softmax, 1),
[self.batch_size, 1]))
question_number_softmax = tf.select(
cond,
tf.fill(tf.shape(question_number_softmax), 1.0),
tf.fill(tf.shape(question_number_softmax), 0.0))
question_number_softmax = tf.cast(question_number_softmax,
self.data_type)
ans = tf.reshape(
tf.reduce_sum(question_number_softmax * tf.concat(
1, [self.batch_question_number, self.batch_question_number_one]),
1), [self.batch_size, 1])
return ans
def compute_op_position(op_name):
for i in range(len(self.utility.operations_set)):
if (op_name == self.utility.operations_set[i]):
return i
def compute_question_number(op_name):
op_embedding = tf.nn.embedding_lookup(self.params_unit,
compute_op_position(op_name))
return compute_ans(op_embedding, op_name)
curr_greater_question_number = compute_question_number("greater")
curr_lesser_question_number = compute_question_number("lesser")
curr_geq_question_number = compute_question_number("geq")
curr_leq_question_number = compute_question_number("leq")
return curr_greater_question_number, curr_lesser_question_number, curr_geq_question_number, curr_leq_question_number
def perform_attention(self, context_vector, hidden_vectors, length, mask):
#Performs attention on hiddent_vectors using context vector
context_vector = tf.tile(
tf.expand_dims(context_vector, 0), [length, 1, 1]) #time * bs * d
attention_softmax = tf.nn.softmax(
tf.transpose(tf.reduce_sum(context_vector * hidden_vectors, 2)) +
mask) #batch_size * time
attention_softmax = tf.tile(
tf.expand_dims(tf.transpose(attention_softmax), 2),
[1, 1, self.embedding_dims])
ans_vector = tf.reduce_sum(attention_softmax * hidden_vectors, 0)
return ans_vector
#computes embeddings for column names using parameters of question module
def get_column_hidden_vectors(self):
#vector representations for the column names
self.column_hidden_vectors = tf.reduce_sum(
nn_utils.get_embedding(self.batch_number_column_names, self.utility,
self.params), 2)
self.word_column_hidden_vectors = tf.reduce_sum(
nn_utils.get_embedding(self.batch_word_column_names, self.utility,
self.params), 2)
def create_summary_embeddings(self):
#embeddings for each text entry in the table using parameters of the question module
self.summary_text_entry_embeddings = tf.reduce_sum(
tf.expand_dims(self.batch_exact_match, 3) * tf.expand_dims(
tf.expand_dims(
tf.expand_dims(
nn_utils.get_embedding(self.utility.entry_match_token_id,
self.utility, self.params), 0), 1),
2), 2)
def compute_column_softmax(self, column_controller_vector, time_step):
#compute softmax over all the columns using column controller vector
column_controller_vector = tf.tile(
tf.expand_dims(column_controller_vector, 1),
[1, self.num_cols + self.num_word_cols, 1]) #max_cols * bs * d
column_controller_vector = nn_utils.apply_dropout(
column_controller_vector, self.utility.FLAGS.dropout, self.mode)
self.full_column_hidden_vectors = tf.concat(
1, [self.column_hidden_vectors, self.word_column_hidden_vectors])
self.full_column_hidden_vectors += self.summary_text_entry_embeddings
self.full_column_hidden_vectors = nn_utils.apply_dropout(
self.full_column_hidden_vectors, self.utility.FLAGS.dropout, self.mode)
column_logits = tf.reduce_sum(
column_controller_vector * self.full_column_hidden_vectors, 2) + (
self.params["word_match_feature_column_name"] *
self.batch_column_exact_match) + self.full_column_mask
column_softmax = tf.nn.softmax(column_logits) #batch_size * max_cols
return column_softmax
def compute_first_or_last(self, select, first=True):
#perform first ot last operation on row select with probabilistic row selection
answer = tf.zeros_like(select)
running_sum = tf.zeros([self.batch_size, 1], self.data_type)
for i in range(self.max_elements):
if (first):
current = tf.slice(select, [0, i], [self.batch_size, 1])
else:
current = tf.slice(select, [0, self.max_elements - 1 - i],
[self.batch_size, 1])
curr_prob = current * (1 - running_sum)
curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
running_sum += curr_prob
temp_ans = []
curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
for i_ans in range(self.max_elements):
if (not (first) and i_ans == self.max_elements - 1 - i):
temp_ans.append(curr_prob)
elif (first and i_ans == i):
temp_ans.append(curr_prob)
else:
temp_ans.append(tf.zeros_like(curr_prob))
temp_ans = tf.transpose(tf.concat(0, temp_ans))
answer += temp_ans
return answer
def make_hard_softmax(self, softmax):
#converts soft selection to hard selection. used at test time
cond = tf.equal(
softmax, tf.reshape(tf.reduce_max(softmax, 1), [self.batch_size, 1]))
softmax = tf.select(
cond, tf.fill(tf.shape(softmax), 1.0), tf.fill(tf.shape(softmax), 0.0))
softmax = tf.cast(softmax, self.data_type)
return softmax
def compute_max_or_min(self, select, maxi=True):
#computes the argmax and argmin of a column with probabilistic row selection
answer = tf.zeros([
self.batch_size, self.num_cols + self.num_word_cols, self.max_elements
], self.data_type)
sum_prob = tf.zeros([self.batch_size, self.num_cols + self.num_word_cols],
self.data_type)
for j in range(self.max_elements):
if (maxi):
curr_pos = j
else:
curr_pos = self.max_elements - 1 - j
select_index = tf.slice(self.full_processed_sorted_index_column,
[0, 0, curr_pos], [self.batch_size, -1, 1])
select_mask = tf.equal(
tf.tile(
tf.expand_dims(
tf.tile(
tf.expand_dims(tf.range(self.max_elements), 0),
[self.batch_size, 1]), 1),
[1, self.num_cols + self.num_word_cols, 1]), select_index)
curr_prob = tf.expand_dims(select, 1) * tf.cast(
select_mask, self.data_type) * self.select_bad_number_mask
curr_prob = curr_prob * tf.expand_dims((1 - sum_prob), 2)
curr_prob = curr_prob * tf.expand_dims(
tf.cast((1 - sum_prob) > 0.0, self.data_type), 2)
answer = tf.select(select_mask, curr_prob, answer)
sum_prob += tf.reduce_sum(curr_prob, 2)
return answer
def perform_operations(self, softmax, full_column_softmax, select,
prev_select_1, curr_pass):
#performs all the 15 operations. computes scalar output, lookup answer and row selector
column_softmax = tf.slice(full_column_softmax, [0, 0],
[self.batch_size, self.num_cols])
word_column_softmax = tf.slice(full_column_softmax, [0, self.num_cols],
[self.batch_size, self.num_word_cols])
init_max = self.compute_max_or_min(select, maxi=True)
init_min = self.compute_max_or_min(select, maxi=False)
#operations that are column independent
count = tf.reshape(tf.reduce_sum(select, 1), [self.batch_size, 1])
select_full_column_softmax = tf.tile(
tf.expand_dims(full_column_softmax, 2),
[1, 1, self.max_elements
]) #BS * (max_cols + max_word_cols) * max_elements
select_word_column_softmax = tf.tile(
tf.expand_dims(word_column_softmax, 2),
[1, 1, self.max_elements]) #BS * max_word_cols * max_elements
select_greater = tf.reduce_sum(
self.init_select_greater * select_full_column_softmax,
1) * self.batch_question_number_mask #BS * max_elements
select_lesser = tf.reduce_sum(
self.init_select_lesser * select_full_column_softmax,
1) * self.batch_question_number_mask #BS * max_elements
select_geq = tf.reduce_sum(
self.init_select_geq * select_full_column_softmax,
1) * self.batch_question_number_mask #BS * max_elements
select_leq = tf.reduce_sum(
self.init_select_leq * select_full_column_softmax,
1) * self.batch_question_number_mask #BS * max_elements
select_max = tf.reduce_sum(init_max * select_full_column_softmax,
1) #BS * max_elements
select_min = tf.reduce_sum(init_min * select_full_column_softmax,
1) #BS * max_elements
select_prev = tf.concat(1, [
tf.slice(select, [0, 1], [self.batch_size, self.max_elements - 1]),
tf.cast(tf.zeros([self.batch_size, 1]), self.data_type)
])
select_next = tf.concat(1, [
tf.cast(tf.zeros([self.batch_size, 1]), self.data_type), tf.slice(
select, [0, 0], [self.batch_size, self.max_elements - 1])
])
select_last_rs = self.compute_first_or_last(select, False)
select_first_rs = self.compute_first_or_last(select, True)
select_word_match = tf.reduce_sum(self.batch_exact_match *
select_full_column_softmax, 1)
select_group_by_max = tf.reduce_sum(self.batch_group_by_max *
select_full_column_softmax, 1)
length_content = 1
length_select = 13
length_print = 1
values = tf.concat(1, [count])
softmax_content = tf.slice(softmax, [0, 0],
[self.batch_size, length_content])
#compute scalar output
output = tf.reduce_sum(tf.mul(softmax_content, values), 1)
#compute lookup answer
softmax_print = tf.slice(softmax, [0, length_content + length_select],
[self.batch_size, length_print])
curr_print = select_full_column_softmax * tf.tile(
tf.expand_dims(select, 1),
[1, self.num_cols + self.num_word_cols, 1
]) #BS * max_cols * max_elements (conisders only column)
self.batch_lookup_answer = curr_print * tf.tile(
tf.expand_dims(softmax_print, 2),
[1, self.num_cols + self.num_word_cols, self.max_elements
]) #BS * max_cols * max_elements
self.batch_lookup_answer = self.batch_lookup_answer * self.select_full_mask
#compute row select
softmax_select = tf.slice(softmax, [0, length_content],
[self.batch_size, length_select])
select_lists = [
tf.expand_dims(select_prev, 1), tf.expand_dims(select_next, 1),
tf.expand_dims(select_first_rs, 1), tf.expand_dims(select_last_rs, 1),
tf.expand_dims(select_group_by_max, 1),
tf.expand_dims(select_greater, 1), tf.expand_dims(select_lesser, 1),
tf.expand_dims(select_geq, 1), tf.expand_dims(select_leq, 1),
tf.expand_dims(select_max, 1), tf.expand_dims(select_min, 1),
tf.expand_dims(select_word_match, 1),
tf.expand_dims(self.reset_select, 1)
]
select = tf.reduce_sum(
tf.tile(tf.expand_dims(softmax_select, 2), [1, 1, self.max_elements]) *
tf.concat(1, select_lists), 1)
select = select * self.select_whole_mask
return output, select
def one_pass(self, select, question_embedding, hidden_vectors, hprev,
prev_select_1, curr_pass):
#Performs one timestep which involves selecting an operation and a column
attention_vector = self.perform_attention(
hprev, hidden_vectors, self.question_length,
self.batch_question_attention_mask) #batch_size * embedding_dims
controller_vector = tf.nn.relu(
tf.matmul(hprev, self.params["controller_prev"]) + tf.matmul(
tf.concat(1, [question_embedding, attention_vector]), self.params[
"controller"]))
column_controller_vector = tf.nn.relu(
tf.matmul(hprev, self.params["column_controller_prev"]) + tf.matmul(
tf.concat(1, [question_embedding, attention_vector]), self.params[
"column_controller"]))
controller_vector = nn_utils.apply_dropout(
controller_vector, self.utility.FLAGS.dropout, self.mode)
self.operation_logits = tf.matmul(controller_vector,
tf.transpose(self.params_unit))
softmax = tf.nn.softmax(self.operation_logits)
soft_softmax = softmax
#compute column softmax: bs * max_columns
weighted_op_representation = tf.transpose(
tf.matmul(tf.transpose(self.params_unit), tf.transpose(softmax)))
column_controller_vector = tf.nn.relu(
tf.matmul(
tf.concat(1, [
column_controller_vector, weighted_op_representation
]), self.params["break_conditional"]))
full_column_softmax = self.compute_column_softmax(column_controller_vector,
curr_pass)
soft_column_softmax = full_column_softmax
if (self.mode == "test"):
full_column_softmax = self.make_hard_softmax(full_column_softmax)
softmax = self.make_hard_softmax(softmax)
output, select = self.perform_operations(softmax, full_column_softmax,
select, prev_select_1, curr_pass)
return output, select, softmax, soft_softmax, full_column_softmax, soft_column_softmax
def compute_lookup_error(self, val):
#computes lookup error.
cond = tf.equal(self.batch_print_answer, val)
inter = tf.select(
cond, self.init_print_error,
tf.tile(
tf.reshape(tf.constant(1e10, self.data_type), [1, 1, 1]), [
self.batch_size, self.utility.FLAGS.max_word_cols +
self.utility.FLAGS.max_number_cols,
self.utility.FLAGS.max_elements
]))
return tf.reduce_min(tf.reduce_min(inter, 1), 1) * tf.cast(
tf.greater(
tf.reduce_sum(tf.reduce_sum(tf.cast(cond, self.data_type), 1), 1),
0.0), self.data_type)
def soft_min(self, x, y):
return tf.maximum(-1.0 * (1 / (
self.utility.FLAGS.soft_min_value + 0.0)) * tf.log(
tf.exp(-self.utility.FLAGS.soft_min_value * x) + tf.exp(
-self.utility.FLAGS.soft_min_value * y)), tf.zeros_like(x))
def error_computation(self):
#computes the error of each example in a batch
math_error = 0.5 * tf.square(tf.sub(self.scalar_output, self.batch_answer))
#scale math error
math_error = math_error / self.rows
math_error = tf.minimum(math_error, self.utility.FLAGS.max_math_error *
tf.ones(tf.shape(math_error), self.data_type))
self.init_print_error = tf.select(
self.batch_gold_select, -1 * tf.log(self.batch_lookup_answer + 1e-300 +
self.invert_select_full_mask), -1 *
tf.log(1 - self.batch_lookup_answer)) * self.select_full_mask
print_error_1 = self.init_print_error * tf.cast(
tf.equal(self.batch_print_answer, 0.0), self.data_type)
print_error = tf.reduce_sum(tf.reduce_sum((print_error_1), 1), 1)
for val in range(1, 58):
print_error += self.compute_lookup_error(val + 0.0)
print_error = print_error * self.utility.FLAGS.print_cost / self.num_entries
if (self.mode == "train"):
error = tf.select(
tf.logical_and(
tf.not_equal(self.batch_answer, 0.0),
tf.not_equal(
tf.reduce_sum(tf.reduce_sum(self.batch_print_answer, 1), 1),
0.0)),
self.soft_min(math_error, print_error),
tf.select(
tf.not_equal(self.batch_answer, 0.0), math_error, print_error))
else:
error = tf.select(
tf.logical_and(
tf.equal(self.scalar_output, 0.0),
tf.equal(
tf.reduce_sum(tf.reduce_sum(self.batch_lookup_answer, 1), 1),
0.0)),
tf.ones_like(math_error),
tf.select(
tf.equal(self.scalar_output, 0.0), print_error, math_error))
return error
def batch_process(self):
#Computes loss and fraction of correct examples in a batch.
self.params_unit = nn_utils.apply_dropout(
self.params["unit"], self.utility.FLAGS.dropout, self.mode)
batch_size = self.batch_size
max_passes = self.max_passes
num_timesteps = 1
max_elements = self.max_elements
select = tf.cast(
tf.fill([self.batch_size, max_elements], 1.0), self.data_type)
hprev = tf.cast(
tf.fill([self.batch_size, self.embedding_dims], 0.0),
self.data_type) #running sum of the hidden states of the model
output = tf.cast(tf.fill([self.batch_size, 1], 0.0),
self.data_type) #output of the model
correct = tf.cast(
tf.fill([1], 0.0), self.data_type
) #to compute accuracy, returns number of correct examples for this batch
total_error = 0.0
prev_select_1 = tf.zeros_like(select)
self.create_summary_embeddings()
self.get_column_hidden_vectors()
#get question embedding
question_embedding, hidden_vectors = self.LSTM_question_embedding(
self.batch_question, self.question_length)
#compute arguments for comparison operation
greater_question_number, lesser_question_number, geq_question_number, leq_question_number = self.question_number_softmax(
hidden_vectors)
self.init_select_greater = tf.cast(
tf.greater(self.full_processed_column,
tf.expand_dims(greater_question_number, 2)), self.
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
self.init_select_lesser = tf.cast(
tf.less(self.full_processed_column,
tf.expand_dims(lesser_question_number, 2)), self.
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
self.init_select_geq = tf.cast(
tf.greater_equal(self.full_processed_column,
tf.expand_dims(geq_question_number, 2)), self.
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
self.init_select_leq = tf.cast(
tf.less_equal(self.full_processed_column,
tf.expand_dims(leq_question_number, 2)), self.
data_type) * self.select_bad_number_mask #bs * max_cols * max_elements
self.init_select_word_match = 0
if (self.utility.FLAGS.rnn_dropout > 0.0):
if (self.mode == "train"):
history_rnn_dropout_mask = tf.cast(
tf.random_uniform(
tf.shape(hprev), minval=0.0, maxval=1.0) <
self.utility.FLAGS.rnn_dropout,
self.data_type) / self.utility.FLAGS.rnn_dropout
else:
history_rnn_dropout_mask = tf.ones_like(hprev)
select = select * self.select_whole_mask
self.batch_log_prob = tf.zeros([self.batch_size], dtype=self.data_type)
#Perform max_passes and at each pass select operation and column
for curr_pass in range(max_passes):
print "step: ", curr_pass
output, select, softmax, soft_softmax, column_softmax, soft_column_softmax = self.one_pass(
select, question_embedding, hidden_vectors, hprev, prev_select_1,
curr_pass)
prev_select_1 = select
#compute input to history RNN
input_op = tf.transpose(
tf.matmul(
tf.transpose(self.params_unit), tf.transpose(
soft_softmax))) #weighted average of emebdding of operations
input_col = tf.reduce_sum(
tf.expand_dims(soft_column_softmax, 2) *
self.full_column_hidden_vectors, 1)
history_input = tf.concat(1, [input_op, input_col])
history_input = nn_utils.apply_dropout(
history_input, self.utility.FLAGS.dropout, self.mode)
hprev = self.history_recurrent_step(history_input, hprev)
if (self.utility.FLAGS.rnn_dropout > 0.0):
hprev = hprev * history_rnn_dropout_mask
self.scalar_output = output
error = self.error_computation()
cond = tf.less(error, 0.0001, name="cond")
correct_add = tf.select(
cond, tf.fill(tf.shape(cond), 1.0), tf.fill(tf.shape(cond), 0.0))
correct = tf.reduce_sum(correct_add)
error = error / batch_size
total_error = tf.reduce_sum(error)
total_correct = correct / batch_size
return total_error, total_correct
def compute_error(self):
#Sets mask variables and performs batch processing
self.batch_gold_select = self.batch_print_answer > 0.0
self.full_column_mask = tf.concat(
1, [self.batch_number_column_mask, self.batch_word_column_mask])
self.full_processed_column = tf.concat(
1,
[self.batch_processed_number_column, self.batch_processed_word_column])
self.full_processed_sorted_index_column = tf.concat(1, [
self.batch_processed_sorted_index_number_column,
self.batch_processed_sorted_index_word_column
])
self.select_bad_number_mask = tf.cast(
tf.logical_and(
tf.not_equal(self.full_processed_column,
self.utility.FLAGS.pad_int),
tf.not_equal(self.full_processed_column,
self.utility.FLAGS.bad_number_pre_process)),
self.data_type)
self.select_mask = tf.cast(
tf.logical_not(
tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int)),
self.data_type)
self.select_word_mask = tf.cast(
tf.logical_not(
tf.equal(self.batch_word_column_entry_mask,
self.utility.dummy_token_id)), self.data_type)
self.select_full_mask = tf.concat(
1, [self.select_mask, self.select_word_mask])
self.select_whole_mask = tf.maximum(
tf.reshape(
tf.slice(self.select_mask, [0, 0, 0],
[self.batch_size, 1, self.max_elements]),
[self.batch_size, self.max_elements]),
tf.reshape(
tf.slice(self.select_word_mask, [0, 0, 0],
[self.batch_size, 1, self.max_elements]),
[self.batch_size, self.max_elements]))
self.invert_select_full_mask = tf.cast(
tf.concat(1, [
tf.equal(self.batch_number_column, self.utility.FLAGS.pad_int),
tf.equal(self.batch_word_column_entry_mask,
self.utility.dummy_token_id)
]), self.data_type)
self.batch_lookup_answer = tf.zeros(tf.shape(self.batch_gold_select))
self.reset_select = self.select_whole_mask
self.rows = tf.reduce_sum(self.select_whole_mask, 1)
self.num_entries = tf.reshape(
tf.reduce_sum(tf.reduce_sum(self.select_full_mask, 1), 1),
[self.batch_size])
self.final_error, self.final_correct = self.batch_process()
return self.final_error
def create_graph(self, params, global_step):
#Creates the graph to compute error, gradient computation and updates parameters
self.params = params
batch_size = self.batch_size
learning_rate = tf.cast(self.utility.FLAGS.learning_rate, self.data_type)
self.total_cost = self.compute_error()
optimize_params = self.params.values()
optimize_names = self.params.keys()
print "optimize params ", optimize_names
if (self.utility.FLAGS.l2_regularizer > 0.0):
reg_cost = 0.0
for ind_param in self.params.keys():
reg_cost += tf.nn.l2_loss(self.params[ind_param])
self.total_cost += self.utility.FLAGS.l2_regularizer * reg_cost
grads = tf.gradients(self.total_cost, optimize_params, name="gradients")
grad_norm = 0.0
for p, name in zip(grads, optimize_names):
print "grads: ", p, name
if isinstance(p, tf.IndexedSlices):
grad_norm += tf.reduce_sum(p.values * p.values)
elif not (p == None):
grad_norm += tf.reduce_sum(p * p)
grad_norm = tf.sqrt(grad_norm)
max_grad_norm = np.float32(self.utility.FLAGS.clip_gradients).astype(
self.utility.np_data_type[self.utility.FLAGS.data_type])
grad_scale = tf.minimum(
tf.cast(1.0, self.data_type), max_grad_norm / grad_norm)
clipped_grads = list()
for p in grads:
if isinstance(p, tf.IndexedSlices):
tmp = p.values * grad_scale
clipped_grads.append(tf.IndexedSlices(tmp, p.indices))
elif not (p == None):
clipped_grads.append(p * grad_scale)
else:
clipped_grads.append(p)
grads = clipped_grads
self.global_step = global_step
params_list = self.params.values()
params_list.append(self.global_step)
adam = tf.train.AdamOptimizer(
learning_rate,
epsilon=tf.cast(self.utility.FLAGS.eps, self.data_type),
use_locking=True)
self.step = adam.apply_gradients(zip(grads, optimize_params),
global_step=self.global_step)
self.init_op = tf.initialize_all_variables()